搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于银纳米链的马赫-曾德干涉仪结构的生物传感器

王坤 段高燕 郎佩琳 赵玉芳 刘尖斌 宋钢

引用本文:
Citation:

基于银纳米链的马赫-曾德干涉仪结构的生物传感器

王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢

Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings

Wang Kun, Duan Gao-Yan, Lang Pei-Lin, Zhao Yu-Fang, Liu Jian-Bin, Song Gang
PDF
HTML
导出引用
  • 优化了一种基于表面等离激元银纳米链的马赫-曾德干涉式传感结构. 该结构由参考臂、传感臂及纳米线波导构成. 纳米线波导由银纳米线包裹一定厚度的硅来构成. 引入两条银纳米链分别作为马赫-曾德干涉仪的参考臂和传感臂, 并研究所设计结构的传输特性, 通过降低传输损耗以提高所设计结构的精确度与灵敏度. 相比于两条完全相同的银纳米线作为参考臂和传感臂的情况, 在参考臂和传感臂改为银纳米链后, 传输特性有明显提高, 单位长度损耗明显降低. 这是由于银纳米链中的单元结构之间的长程/库仑相互作用增强了结构中的电磁场, 进而降低了传输损耗. 将两条银纳米链的晶格常数设置为不同的情况, 研究发现, 在特定的银包硅纳米线的宽度与某些占空比下, 含有非对称的银纳米链结构的单位传输损耗小于含有对称的银纳米链结构. 由此可以知道, 具有小损耗的银纳米颗粒链可以弥补大损耗的银纳米颗粒链的传输损失. 利用这个特点, 进一步优化设计结构, 将一侧银纳米链改为纳米线. 改变另一侧银纳米链的晶格常数与占空比, 可以发现大多数情况下, 这类结构传输特性优于含有两条银纳米链以及含有两条银纳米线的结构. 本文的设计结构可以大幅减小传统的马赫-曾德干涉仪的传输损耗, 且在结构的制备过程中容错率高, 在实际应用中有巨大的潜在应用价值.
    In this paper, a Mach-Zehnder interferometric sensing structure based on silver nanochains of surface plasmons is optimized. The structure consists of a reference arm, a sensing arm and a nanowire waveguide. Nanowire waveguides are composed of silicon nanowires wrapped with a certain thickness of silver. Introduce two silver nanochains as the reference arm and the sensing arm of the Mach-Zehnder interferometer. And research the transmission characteristics of the designed structure. Improve the accuracy and sensitivity of the designed structure by reducing the transmission loss. Compared with two identical silver nanowires as the reference arm and the sensing arm. After the reference arm and the sensing arm are changed to silver nanochains, the transmission characteristics are significantly improved, and the loss per unit length is obviously reduced. This is because the long-range or coulomb interaction between the unit structures of the silver nano-chains enhances the electromagnetic field in the structure, thereby reducing the transmission loss. We set the lattice constants of the two silver nanochains to different situations. The study found that under the wider width of silicon-coated silver nanowires and certain duty ratios. The unit transmission loss of a structure containing asymmetric silver nanochains is smaller than that of a structure containing symmetric silver nanochains. It can be known that silver nanoparticle chains with small loss can compensate for the transmission loss of silver nanoparticle chains with large loss. Using this feature, we further optimized the design structure and changed one side of the silver nano-chain to nano-wire. Change the lattice constant and duty cycle of the silver nanochain on the other side. We have found that in most cases, this type of structure has better transmission characteristics than a structure containing two silver nanochains and a structure containing two silver nanowires. Our design structure can greatly reduce the transmission loss of the traditional Mach-Zehnder interferometer. Moreover, the fault tolerance rate is high in the preparation process of the structure. It has huge potential application value in practical application.
      通信作者: 宋钢, sg2010@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604020)资助的课题
      Corresponding author: Song Gang, sg2010@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11604020)
    [1]

    Luan X G, Xu X M, Li M, Yu R, Cheng L F 2020 J. Alloys Compd. 850 156782

    [2]

    Teng C X, Deng S J, Deng H C, Yang H Y, Xu Y H, Yuan L B, Zheng J, Liu H Q 2019 Opt. Eng. 58 072002

    [3]

    Omair Z, Talukder M A 2019 Plasmonics 6

    [4]

    Yamashita T, Ookawa N, Ishida M, Kanamori H, Sasaki H, Katayose Y, Yokoyama H 2016 Sci. Rep. 6 38552Google Scholar

    [5]

    Sepulveda B, Rio J S D, Moreno M, Blanco F J, Mayora K, Dominguez C, Lechuga L M 2006 J. Opt. A: Pure Appl. Opt. 8 S561Google Scholar

    [6]

    Ghosh S, Rahman B 2017 J. Lightwave Technol. 35 3003

    [7]

    Ayoub A B, Ji D, Gan Q, Swillam, Mohamed A 2018 Opt. Commun. 427 219

    [8]

    刘仿, 李云翔, 黄翊东 2017 物理学报 14 148101Google Scholar

    Liu F, Li Y X, Huang Y D 2017 Acta Phys. Sin. 14 148101Google Scholar

    [9]

    Ma Y Q, Nguyen-Huu N, Zhou J, Maeda H, Wu Q, Eldlio M, Pistora J, Cada M 2017 IEEE J. Sel. Top. Quantum 99 1

    [10]

    Stefan A M 2007 Plasmonics-Fundamentals and Applications (London: Springer US) p45

    [11]

    Hao J, Sabarinathan J 2010 Vestn Akad Med Nauk SSSR 114 38

    [12]

    Mirzanejhad S, Ghadi A, Daraei M E 2018 Physica B 557 141

    [13]

    Gan Q Q, Gao Y K, Bartoli F J 2009 Opt. Express 17 20747Google Scholar

    [14]

    Sun X, Dai D X, Lars T, Wosinski L 2015 Opt. Express 23 8

    [15]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496Google Scholar

    [16]

    Chen C, Xun H, Jinhai S 2019 Opt. Express 25 31294

    [17]

    Ghosh S, Rahman B M A 2019 Journal of Physics Conference Malacca, Malaysia, July 23–25, 2018 p012012

    [18]

    Osowiecki G D, Barakat E, Naqavi A, Herzig H P 2014 Opt. Express 22 20871

    [19]

    Liu W X, Yan J L, Shi Y C 2017 Opt. Express 25 31739Google Scholar

    [20]

    李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才 2018 物理学报 23 234202Google Scholar

    Li S Y, Tian J F, Yang C, Zuo G H, Zhang Y C, Zhang T C 2018 Acta Phys. Sin. 23 234202Google Scholar

    [21]

    程君妮 2018 物理学报 67 024212Google Scholar

    Chen J N 2018 Acta Phys. Sin. 67 024212Google Scholar

    [22]

    Patel P B, Hamde S T 2017 J. Opt. 46 398Google Scholar

    [23]

    王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵 2021 物理学报 70 224201Google Scholar

    Wang F, Cheng Y K, Li C Q, Ma T, Lu Y H, Liu H, Jin C 2021 Acta Phys. Sin. 70 224201Google Scholar

    [24]

    Shi Y C, Dai D X, He S L, Sun M 2006 CN1731149A (in Chinese)[时尧成, 戴道锌, 何赛灵, 孙淼 2006 CN1731149A]

    [25]

    Liu N, Langguth L, Weiss T, Kstel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [26]

    Hodgman C 1924 Handbook of Chemistry and Physics (Los Angeles: CRC Press) p22

    [27]

    Aspnes D, EStudna A A 1983 Phys. Rev. B 27 985Google Scholar

    [28]

    Malitson I H 1965 J. Opt. Soc. Am 55 1205Google Scholar

    [29]

    Chen F, Zhang H F, Sun L H, L J J, Yu C C 2019 Opt. Laser Technol. 116 293Google Scholar

    [30]

    Stefan A M 2007 Plasmonics: Fundamentals and Applications (London: Springer US) p45

    [31]

    Song G, Zhang W 2016 Plasmonics 12 1

  • 图 1  (a) 传感结构示意图; (b) 覆盖于液体媒质值中的传感结构横截面图

    Fig. 1.  (a) Schematic diagram of the sensing structure; (b) cross-sectional view of the sensing structure covered.

    图 2  波导宽度分别为$W_{{\rm{Ag}}} = 100$, 200, 300和400 nm, Ag纳米颗粒链晶格常数($ L_{1} = L_{2} $)取不同值时, 单位长度低损耗和占空比之间的关系 (a) 600 nm; (b) 775 nm; (c) 1310 nm; (d) 1550 nm

    Fig. 2.  Loss per unit length versus duty ratio for four widths $W_{{\rm{Ag}}} = 100$, 200, 300 and 400 nm with different values of $L_{1} = L_{2} $: (a) 600 nm; (b) 775 nm; (c) 1310 nm; (d) 1550 nm.

    图 3  非对称结构下, 包裹着Si纳米线的Ag纳米线宽度不同时单位长度的损耗与占空比之间的关系 (a)$W_{{\rm{Ag}}}$ = 100 nm; (b) WAg = 200 nm; (c) WAg = 300 nm; (d) WAg = 400 nm

    Fig. 3.  Loss per unit length versus the duty ratio for the asymmetric structure with different width of Ag nanowire: (a) $ W_{{\rm{Ag}}} $ = 100 nm; (b) WAg = 200 nm; (c) WAg = 300 nm; (d) WAg = 400 nm.

    图 4  非对称结构下, 包裹着Si纳米线的Ag纳米线宽度不同时单位长度的损耗与占空比之间的关系 (a), (e) $ W_{{\rm{Ag}}} $ = 100 nm; (b), (f) WAg = 200 nm; (c), (g) WAg = 300 nm; (d), (h) WAg = 400 nm. 银纳米粒子链的晶格常数分别为 (a)−(d) $L_{1} = L_{2} = 600\;{\rm{ nm}}$, $L_{1} = 600\;{\rm{ nm}}$, $L_{2} = 1550\; {\rm{nm }}$$L_{1} = L_{2} = 1550\; {\rm{nm }}$; (e)−(h) $L_{1} = L_{2} = 775\; {\rm{nm}}$, $L_{1} = 775\;{\rm{ nm}}$, $L_{2} = 1550\; {\rm{nm}}$$L_{1} = L_{2} = $$ 1550\; {\rm{nm}}$

    Fig. 4.  Loss per unit length versus the duty ratio for the asymmetric structure with different width of Ag nanowire: (a), (e) $ W_{{\rm{Ag}}} $ = 100 nm; (b), (f) WAg = 200 nm; (c), (g) WAg = 300 nm; (d), (h) WAg = 400 nm. The lattice constants of Ag nanoparticle chain are considered as: (a)−(d) $L_{1} = L_{2} = 775\; {\rm{nm}}$, $L_{1} = 775\; {\rm{nm}}$, $L_{2} = 1550\; {\rm{nm }}$, and $L_{1} = L_{2} = 1550\; {\rm{nm}}$; (e)−(h) $L_{1} = L_{2} = 1310\; {\rm{nm}}$, $L_{1} = 1310\; {\rm{nm}}$, $L_{2} = 1550\;{\rm{ nm}}$, and $L_{1} = L_{2} = 1550\; {\rm{nm}}$.

    图 5  晶格常数L取不同值时,单位长度的损耗与占空比$ r_{1} $之间的关系 (a) L = 600 nm; (b) L = 775 nm; (c) L = 1310 nm; (d) L = 1550 nm. 实线表示非对称结构, 虚线表示对称结构. 这里设置 $ r_{2} $为1

    Fig. 5.  Loss per unit length $\delta$ versus $r_{1}$ with different lattice constants: (a) L = 600 nm; (b) L = 775 nm; (c) L = 1310 nm; (d) L = 1550 nm. The solid line presents the the asymmetric structure and the dash line is the symmetric structure. Here, $r_{2}$ is fixed at 1

  • [1]

    Luan X G, Xu X M, Li M, Yu R, Cheng L F 2020 J. Alloys Compd. 850 156782

    [2]

    Teng C X, Deng S J, Deng H C, Yang H Y, Xu Y H, Yuan L B, Zheng J, Liu H Q 2019 Opt. Eng. 58 072002

    [3]

    Omair Z, Talukder M A 2019 Plasmonics 6

    [4]

    Yamashita T, Ookawa N, Ishida M, Kanamori H, Sasaki H, Katayose Y, Yokoyama H 2016 Sci. Rep. 6 38552Google Scholar

    [5]

    Sepulveda B, Rio J S D, Moreno M, Blanco F J, Mayora K, Dominguez C, Lechuga L M 2006 J. Opt. A: Pure Appl. Opt. 8 S561Google Scholar

    [6]

    Ghosh S, Rahman B 2017 J. Lightwave Technol. 35 3003

    [7]

    Ayoub A B, Ji D, Gan Q, Swillam, Mohamed A 2018 Opt. Commun. 427 219

    [8]

    刘仿, 李云翔, 黄翊东 2017 物理学报 14 148101Google Scholar

    Liu F, Li Y X, Huang Y D 2017 Acta Phys. Sin. 14 148101Google Scholar

    [9]

    Ma Y Q, Nguyen-Huu N, Zhou J, Maeda H, Wu Q, Eldlio M, Pistora J, Cada M 2017 IEEE J. Sel. Top. Quantum 99 1

    [10]

    Stefan A M 2007 Plasmonics-Fundamentals and Applications (London: Springer US) p45

    [11]

    Hao J, Sabarinathan J 2010 Vestn Akad Med Nauk SSSR 114 38

    [12]

    Mirzanejhad S, Ghadi A, Daraei M E 2018 Physica B 557 141

    [13]

    Gan Q Q, Gao Y K, Bartoli F J 2009 Opt. Express 17 20747Google Scholar

    [14]

    Sun X, Dai D X, Lars T, Wosinski L 2015 Opt. Express 23 8

    [15]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496Google Scholar

    [16]

    Chen C, Xun H, Jinhai S 2019 Opt. Express 25 31294

    [17]

    Ghosh S, Rahman B M A 2019 Journal of Physics Conference Malacca, Malaysia, July 23–25, 2018 p012012

    [18]

    Osowiecki G D, Barakat E, Naqavi A, Herzig H P 2014 Opt. Express 22 20871

    [19]

    Liu W X, Yan J L, Shi Y C 2017 Opt. Express 25 31739Google Scholar

    [20]

    李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才 2018 物理学报 23 234202Google Scholar

    Li S Y, Tian J F, Yang C, Zuo G H, Zhang Y C, Zhang T C 2018 Acta Phys. Sin. 23 234202Google Scholar

    [21]

    程君妮 2018 物理学报 67 024212Google Scholar

    Chen J N 2018 Acta Phys. Sin. 67 024212Google Scholar

    [22]

    Patel P B, Hamde S T 2017 J. Opt. 46 398Google Scholar

    [23]

    王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵 2021 物理学报 70 224201Google Scholar

    Wang F, Cheng Y K, Li C Q, Ma T, Lu Y H, Liu H, Jin C 2021 Acta Phys. Sin. 70 224201Google Scholar

    [24]

    Shi Y C, Dai D X, He S L, Sun M 2006 CN1731149A (in Chinese)[时尧成, 戴道锌, 何赛灵, 孙淼 2006 CN1731149A]

    [25]

    Liu N, Langguth L, Weiss T, Kstel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [26]

    Hodgman C 1924 Handbook of Chemistry and Physics (Los Angeles: CRC Press) p22

    [27]

    Aspnes D, EStudna A A 1983 Phys. Rev. B 27 985Google Scholar

    [28]

    Malitson I H 1965 J. Opt. Soc. Am 55 1205Google Scholar

    [29]

    Chen F, Zhang H F, Sun L H, L J J, Yu C C 2019 Opt. Laser Technol. 116 293Google Scholar

    [30]

    Stefan A M 2007 Plasmonics: Fundamentals and Applications (London: Springer US) p45

    [31]

    Song G, Zhang W 2016 Plasmonics 12 1

  • [1] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241379
    [2] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [3] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [4] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [5] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [8] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [9] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [10] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [11] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [12] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [13] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [14] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [15] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [16] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [19] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [20] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器. 物理学报, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
计量
  • 文章访问数:  4336
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-08
  • 上网日期:  2021-12-21
  • 刊出日期:  2022-01-05

/

返回文章
返回