搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

傅里叶红外光谱气体检测限的定性分析

王钰豪 刘建国 徐亮 成潇潇 邓亚颂 沈先春 孙永丰 徐寒杨

引用本文:
Citation:

傅里叶红外光谱气体检测限的定性分析

王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨

Qualitative analysis of gas detection limit of Fourier infrared spectroscopy

Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Cheng Xiao-Xiao, Deng Ya-Song, Shen Xian-Chun, Sun Yong-Feng, Xu Han-Yang
PDF
HTML
导出引用
  • 傅里叶红外光谱仪检测和定量气态化合物的最小量取决于所测气体光谱的信噪比. 为了使用傅里叶变换红外吸收光谱测量CO2, CO, CH4和N2O等温室气体, 对混合气体的信噪比和仪器检测限进行了研究. 提出通过HITRAN模拟光谱计算仪器的气体检测限并分析波段等因素的影响. 此外, 搭建实验平台来验证基于HITRAN模拟光谱计算的检测限近似作为仪器实际测量检测限的精确程度, 并分析了两者具有误差的原因和现有实验平台的不足及优化方案.
    The minimum amount that can be detected and quantitatively analyzed by Fourier infrared spectrometer depends on the signal-to-noise ratio of the measured gas spectrum. In order to use Fourier transform infrared absorption spectroscopy to measure CO2, CO, CH4, N2O and other greenhouse gases, the signal-to-noise ratio and instrument detection limit of the mixed gas are studied. We propose a method to calculate the gas detection limit of the instrument through the HITRAN simulation spectrum. In addition, we build an experimental platform to verify the accuracy of the detection limit approximation based on the HITRAN simulation spectrum calculation, which serves as the actual measurement detection limit of the instrument, and we also analyze the reasons why there appears the error between the existing experimental platform and optimization scheme and their deficiencies as well.
      通信作者: 徐亮, xuliang@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41941011)、中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-DQC016)和国家重点研发计划(批准号: 2019YFF0303400)资助的课题.
      Corresponding author: Xu Liang, xuliang@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41941011), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC016), and the National Key Research and Development Program of China (Grant No. 2019YFF0303400).
    [1]

    Arevalo-Martinez D L, Beyer M, Krumbholz M, Piller I, Kock A, Steinhoff T, Körtzinger A, Bange H W 2013 Ocean Sci. 9 1071Google Scholar

    [2]

    Baer D, Gupta M, Leen J B, Berman E 2012 American Laboratory 44 20

    [3]

    Schibig M F, Steinbacher M, Buchmann B, Van Der Laan-Luijkx I, van Der Laan S, Ranjan S, Leuenberger M C 2015 Atmos. Meas. Tech. 8 57Google Scholar

    [4]

    Bacsik Z, Mink J, Keresztury G 2004 Appl. Spectrosc. Rev. 39 295Google Scholar

    [5]

    程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清 2013 物理学报 62 124206Google Scholar

    Cheng S Y, Xu L, Cao M G, Jin L, Li S, Feng S X, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 124206Google Scholar

    [6]

    焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar

    Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin. 62 140705Google Scholar

    [7]

    Griffith D W T, Jamie I, Esler M, Wilson S R, Parkes S D, Waring C, Bryant G W 2006 Isot. Environ. Health Stud. 42 9Google Scholar

    [8]

    Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481Google Scholar

    [9]

    Smale D, Sherlock V, Griffith D T, Moss R, Brailsford G, Nichol S, Kotkamp M 2019 Atmos. Meas. Tech. 12 637Google Scholar

    [10]

    Bak J, Clausen S 1999 Appl. Spectrosc. 53 697Google Scholar

    [11]

    Griffiths P R 1972 Anal. Chem. 44 1909Google Scholar

    [12]

    Griffiths P R, De Haseth J A 2007 Fourier Transform Infrared Spectrometry (Vol. 171) (New Jersey: John Wiley & Sons, Inc) pp161–164

    [13]

    Esler M B, Griffith D W T, Wilson S R, Steele L P 2000 Anal. Chem. 72 206Google Scholar

    [14]

    Esler M B, Griffith D W T, Wilson S R, Steele L P 2000 Anal. Chem. 72 216Google Scholar

    [15]

    Haaland D M, Easterling R G, Vopicka D A 1985 Appl. Spectrosc. 39 73Google Scholar

    [16]

    Zimmermann B, Kohler A 2013 Appl Spectrosc 67 892Google Scholar

    [17]

    Liu T T, Liu H, Chen Z Z, Lesgold A M 2018 IEEE Trans. Ind. Inf. 14 5268Google Scholar

    [18]

    Liu H, Li Y, Zhang Z, Liu S, Liu T 2018 Opt. Express 26 22837Google Scholar

    [19]

    Liu L, Huan H, Li W, Mandelis A, Wang Y, Zhang L, Zhang X, Yin X, Wu Y, Shao X 2021 Photoacoustics 21 100228Google Scholar

    [20]

    Hill C, Gordon I E, Kochanov R V, Barrett L, Wilzewski J S, Rothman L S 2016 J. Quant. Spectrosc. Radiat. Transfer 177 4Google Scholar

    [21]

    Kochanov R V, Gordon I, Rothman L, Wcisło P, Hill C, Wilzewski J 2016 Spectrosc. Radiat. Transfer 177 15Google Scholar

    [22]

    Gordon I E, Rothman L S, Hargreaves R, Hashemi R, Karlovets E, Skinner F, Conway E, Hill C, Kochanov R, Tan Y 2021 Transfer 277 107949

    [23]

    Manning C J, Griffiths P R 1997 Appl. Spectrosc. 51 1092Google Scholar

  • 图 1  各气体在分辨率为1 cm–1、光程为24 m下的吸光度光谱

    Fig. 1.  Absorbance spectrum of each gas at a resolution of 1 cm–1 and an optical path of 24 m.

    图 2  透过率光谱的最小透过率与光程、分辨率的关系

    Fig. 2.  Relationship of the minimum transmittance of the transmittance spectrum to the optical path and resolution.

    图 3  叠加噪声的透过率仿真光谱 (a)未叠加噪声与叠加噪声的仿真光谱图对比; (b)随机100次叠加0.001标准偏差的噪声的仿真光谱图的反演浓度

    Fig. 3.  Transmittance simulation spectrum with noise added: (a) Comparing the simulated spectrogram with no noise added and noise added; (b) inversion concentration of simulated spectra with noise with 0.01 standard deviation added randomly 100 times.

    图 4  仪器主机

    Fig. 4.  Instrument host.

    图 5  光谱拟合结果 (a) 2097—2242 cm–1拟合N2O和CO; (b) 3001—3150 cm–1拟合CH4; (c) 2150—2310 cm–1拟合12CO213CO2

    Fig. 5.  Spectral fitting results of analysis bands: (a) Fitting N2O and CO at 2097−2242 cm–1; (b) fitting CH4 at 3001−3150 cm–1; (c) fitting 12CO2 and 13CO2 at 2150− 2310 cm–1

    图 6  MCT和MIP检测限测量结果

    Fig. 6.  Measurement results of MCT and MIP detection limit.

    图 7  均方根噪声直接反演CO2浓度的拟合结果

    Fig. 7.  Fitting results of direct inversion of CO2 volume concentration by root mean square noise.

    表 1  WMO范围内建议的测量网络兼容性

    Table 1.  Recommended measurement network compatibility within WMO.

    ComponentWave number/cm–1Extended network
    compatibility goal
    Range in unpolluted
    troposphere
    Range covered by the
    WMO scale
    CO2/(μmol·mol–1)2150—23100.2380—450250—520
    N2O/(nmol·mol–1)2097—22420.3325—335260—370
    CO/(nmol·mol–1)2097—2242530—30030—500
    CH4/(nmol·mol–1)2810—315051750—2100300—5900
    下载: 导出CSV

    表 2  检测限结果对比

    Table 2.  Retrieving concentration from actual spectral data of low noise detector.

    Componentsequence
    CO2/(μmol·mol–1)N2O/(nmol·mol–1)CO/(nmol·mol–1)CH4/(μmol·mol–1)
    DL of MCT detector experimental measurement6.9563430.0139232.986440.01947
    DL of simulated spectrum detection3.2491515.6383141.693580.02526
    DL of MIP detector experimental measurement2.436276.3511216.890.012
    下载: 导出CSV
  • [1]

    Arevalo-Martinez D L, Beyer M, Krumbholz M, Piller I, Kock A, Steinhoff T, Körtzinger A, Bange H W 2013 Ocean Sci. 9 1071Google Scholar

    [2]

    Baer D, Gupta M, Leen J B, Berman E 2012 American Laboratory 44 20

    [3]

    Schibig M F, Steinbacher M, Buchmann B, Van Der Laan-Luijkx I, van Der Laan S, Ranjan S, Leuenberger M C 2015 Atmos. Meas. Tech. 8 57Google Scholar

    [4]

    Bacsik Z, Mink J, Keresztury G 2004 Appl. Spectrosc. Rev. 39 295Google Scholar

    [5]

    程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清 2013 物理学报 62 124206Google Scholar

    Cheng S Y, Xu L, Cao M G, Jin L, Li S, Feng S X, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 124206Google Scholar

    [6]

    焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar

    Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin. 62 140705Google Scholar

    [7]

    Griffith D W T, Jamie I, Esler M, Wilson S R, Parkes S D, Waring C, Bryant G W 2006 Isot. Environ. Health Stud. 42 9Google Scholar

    [8]

    Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481Google Scholar

    [9]

    Smale D, Sherlock V, Griffith D T, Moss R, Brailsford G, Nichol S, Kotkamp M 2019 Atmos. Meas. Tech. 12 637Google Scholar

    [10]

    Bak J, Clausen S 1999 Appl. Spectrosc. 53 697Google Scholar

    [11]

    Griffiths P R 1972 Anal. Chem. 44 1909Google Scholar

    [12]

    Griffiths P R, De Haseth J A 2007 Fourier Transform Infrared Spectrometry (Vol. 171) (New Jersey: John Wiley & Sons, Inc) pp161–164

    [13]

    Esler M B, Griffith D W T, Wilson S R, Steele L P 2000 Anal. Chem. 72 206Google Scholar

    [14]

    Esler M B, Griffith D W T, Wilson S R, Steele L P 2000 Anal. Chem. 72 216Google Scholar

    [15]

    Haaland D M, Easterling R G, Vopicka D A 1985 Appl. Spectrosc. 39 73Google Scholar

    [16]

    Zimmermann B, Kohler A 2013 Appl Spectrosc 67 892Google Scholar

    [17]

    Liu T T, Liu H, Chen Z Z, Lesgold A M 2018 IEEE Trans. Ind. Inf. 14 5268Google Scholar

    [18]

    Liu H, Li Y, Zhang Z, Liu S, Liu T 2018 Opt. Express 26 22837Google Scholar

    [19]

    Liu L, Huan H, Li W, Mandelis A, Wang Y, Zhang L, Zhang X, Yin X, Wu Y, Shao X 2021 Photoacoustics 21 100228Google Scholar

    [20]

    Hill C, Gordon I E, Kochanov R V, Barrett L, Wilzewski J S, Rothman L S 2016 J. Quant. Spectrosc. Radiat. Transfer 177 4Google Scholar

    [21]

    Kochanov R V, Gordon I, Rothman L, Wcisło P, Hill C, Wilzewski J 2016 Spectrosc. Radiat. Transfer 177 15Google Scholar

    [22]

    Gordon I E, Rothman L S, Hargreaves R, Hashemi R, Karlovets E, Skinner F, Conway E, Hill C, Kochanov R, Tan Y 2021 Transfer 277 107949

    [23]

    Manning C J, Griffiths P R 1997 Appl. Spectrosc. 51 1092Google Scholar

计量
  • 文章访问数:  5124
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-01-11
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回