搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表界面调控米级二维单晶原子制造

刘天瑶 刘灿 刘开辉

引用本文:
Citation:

表界面调控米级二维单晶原子制造

刘天瑶, 刘灿, 刘开辉

Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation

Liu Tian-Yao, Liu Can, Liu Kai-Hui
PDF
HTML
导出引用
  • 随着芯片尺寸不断缩小, 短沟道效应、热效应日趋显著. 开发全新的量子材料体系以实现高性能芯片器件应用已成为当前科技发展的迫切需求. 二维材料作为一类重要的量子材料, 其天然具备原子层厚度和平面结构, 能够有效克服短沟道效应并兼容当代微纳加工工艺, 非常有望应用于新一代高性能器件方向. 与硅基芯片发展类似, 二维材料芯片级器件应用必须基于高质量、大尺寸的二维单晶材料制造. 然而, 由于二维材料的表界面特性, 现有体单晶制备技术不能完全适用于单原子层结构的二维单晶制造. 因此, 亟需发展新的制备策略以实现大尺寸、高质量的二维单晶原子制造. 有鉴于此, 本文重点综述表界面调控二维单晶大尺寸制备技术发展现状, 总结梳理了米级二维单晶原子制造过程中的3个关键调控方向, 即单畴生长调控、单晶衬底制备和多畴取向控制. 最后, 系统展望了大尺寸二维单晶在未来规模化芯片器件方向的潜在应用前景.
    With the shrinkage of the chip feature size, the short-channel effect becomes more and more predominate. The development of new quantum materials for high-performance devices has become imperative for the current technological development. Two-dimensional (2D) materials, due to their excellent physical and chemical properties, are thought to be the promising candidate of quantum materials for achieving the high-end electronic and optoelectronic devices. Like the development of silicon-based chips, the wafer-scale device applications of 2D materials must be based on the fabrication of high-quality, large-size 2D single crystals. However, the existing manufacturing techniques of the well-studied bulk single crystals cannot be fully applied to the fabrication of 2D single crystals due to the interfacial characteristics of 2D materials. So far, single crystals of metre-sized graphene, decimetre-sized hBN and wafer-sized TMDCs have been successfully prepared by chemical vapor deposition, but the sizes of other 2D single crystals are still very limited and not in the same league as conventional semiconductor materials. Therefore, it is urgent to develop an effective preparation strategy for the manufacture of various 2D single crystals. In this review, we mainly overview the fabrication techniques for the meter-scale growth of 2D single crystals, and propose three key modulation aspects in the atomic-scale manufacture, i.e. the growth modulation of 2D single nucleus, the preparation of single-crystal substrates, and the alignment control of 2D single-crystal domains, in order to provide a universal method of fabricating the large-size 2D single crystals. Finally, the prospect of chip devices based on these high-quality large-size novel 2D single crystals is discussed, thereby paving the way for the future industrial applications of electronics and optoelectronics.
      通信作者: 刘灿, canliu@pku.edu.cn ; 刘开辉, khliu@pku.edu.cn
    • 基金项目: 广东省重点领域研发计划(批准号: 2019B010931001, 2020B010189001, 2018B030327001)、国家自然科学基金(批准号: 51991342, 52025023, 52021006, 11888101, 92163206, 52172035, 12104018)、北京市杰出青年科学基金(批准号: JQ19004)和中科院先导项目(批准号: XDB33000000)资助的课题.
      Corresponding author: Liu Can, canliu@pku.edu.cn ; Liu Kai-Hui, khliu@pku.edu.cn
    • Funds: Project supported by the Key R&D Program of Guangdong Province (Grant Nos. 2019B010931001, 2020B010189001, 2018B030327001), the National Natural Science Foundation of China (Grant Nos. 51991342, 52025023, 52021006, 11888101, 92163206, 52172035, 12104018), the Beijing Natural Science Foundation (Grant No. JQ19004) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000).
    [1]

    Keyes R W 2005 Rep. Prog. Phys. 68 2701Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [4]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [5]

    Li M Y, Su S K, Wong H S P, Li L J 2019 Nature 567 169Google Scholar

    [6]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 1500222Google Scholar

    [7]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [8]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [9]

    Hong H, Liu C, Cao T, Jin C, Wang S, Wang F, Liu K 2017 Adv. Mater. Interfaces 4 1601054Google Scholar

    [10]

    Liu C, Hong H, Wang Q, Liu P, Zuo Y, Liang J, Cheng Y, Zhou X, Wang J, Zhao Y, Xiong J, Xiang B, Zhang J, Liu K 2019 Nanoscale 11 17195Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [13]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Castro Neto A H 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [14]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [15]

    Liu B, Ma Y, Zhang A, Chen L, Abbas A N, Liu Y, Shen C, Wan H, Zhou C 2016 ACS Nano 10 5153Google Scholar

    [16]

    Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat 1 54Google Scholar

    [17]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [18]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [19]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [20]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [21]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [22]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [23]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [24]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [25]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [26]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [27]

    Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J, Kim K 2012 Science 336 1140Google Scholar

    [28]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photonics 11 366Google Scholar

    [29]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H 2019 Nat. Commun. 10 3161Google Scholar

    [30]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [31]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [32]

    Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J, Zhu H 2018 Chem. Soc. Rev. 47 4981Google Scholar

    [33]

    Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987Google Scholar

    [34]

    Stockbarger D C 1936 Rev. Sci. Instrum. 7 133Google Scholar

    [35]

    Czocbralski J 1918 Z. Phys. Chem. 92 219Google Scholar

    [36]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Sciences 306 666

    [37]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [38]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [39]

    Cai X, Luo Y, Liu B, Cheng H M 2018 Chem. Soc. Rev. 47 6224Google Scholar

    [40]

    Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar

    [41]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [42]

    Halim U, Zheng C R, Chen Y, Lin Z, Jiang S, Cheng R, Huang Y, Duan X 2013 Nat. Commun. 4 2213Google Scholar

    [43]

    Coleman J N 2013 Acc. Chem. Res. 46 14Google Scholar

    [44]

    Cui X, Zhang C, Hao R, Hou Y 2011 Nanoscale 3 2118Google Scholar

    [45]

    Ciesielski A, Samori P 2014 Chem. Soc. Rev. 43 381Google Scholar

    [46]

    Zhang C, Tan J, Pan Y, Cai X, Zou X, Cheng H M, Liu B 2020 Natl. Sci. Rev. 7 324Google Scholar

    [47]

    Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar

    [48]

    Yan K, Fu L, Peng H, Liu Z 2013 Acc. Chem. Res. 46 2263Google Scholar

    [49]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. USA 109 7992Google Scholar

    [50]

    Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110Google Scholar

    [51]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [52]

    Li E, Wang D, Fan P, Zhang R, Zhang Y Y, Li G, Mao J, Wang Y, Lin X, Du S, Gao H J 2018 Nano Res. 11 5858Google Scholar

    [53]

    Chen M W, Ovchinnikov D, Lazar S, Pizzochero M, Whitwick M B, Surrente A, Baranowski M, Sanchez O L, Gillet P, Plochocka P, Yazyev O V, Kis A 2017 ACS Nano 11 6355Google Scholar

    [54]

    Nakhaie S, Wofford J M, Schumann T, Jahn U, Ramsteiner M, Hanke M, Lopes J M J, Riechert H 2015 Appl. Phys. Lett. 106 213108Google Scholar

    [55]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [56]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nat. Chem. 11 730Google Scholar

    [57]

    Zhang Z, Qi J, Zhao M, Shang N, Cheng Y, Qiao R, Zhang Z, Ding M, Li X, Liu K, Xu X, Liu K, Liu C, Wu M 2020 Chinese Phys. Lett. 37 108101Google Scholar

    [58]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [59]

    Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y, Wang X 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [60]

    Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z, Ding D, Hong H, Zheng P, Zhang Z, Zhang Z, Zhang S, Cui G, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y, Xue G, Fang X, Tian J, Wu M, Guo Y, Yao Z, Jiao Q, Liu L, Gao P, Li Q, Yang R, Zhang G, Tang Z, Yu D, Wang E, Lu J, Zhao Y, Wu S, Ding F, Liu K 2022 Nat. Nanotechnol. 17 33Google Scholar

    [61]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443Google Scholar

    [62]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389Google Scholar

    [63]

    Ruiz-Vargas C S, Zhuang H L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G, Park J 2011 Nano Lett. 11 2259Google Scholar

    [64]

    Hammer B, Norskov J K 1995 Nature 376 238Google Scholar

    [65]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101Google Scholar

    [66]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [67]

    Han G H, Gunes F, Bae J J, Kim E S, Chae S J, Shin H J, Choi J Y, Pribat D, Lee Y H 2011 Nano Lett. 11 4144Google Scholar

    [68]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627Google Scholar

    [69]

    Li X, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J. Am. Chem. Soc. 133 2816Google Scholar

    [70]

    Ding G, Zhu Y, Wang S, Gong Q, Sun L, Wu T, Xie X, Jiang M 2013 Carbon 53 321Google Scholar

    [71]

    Zeng M, Tan L, Wang J, Chen L, Rümmeli M H, Fu L 2014 Chem. Mater. 26 3637Google Scholar

    [72]

    Zang X, Zhou Q, Chang J, Teh K S, Wei M, Zettl A, Lin L 2017 Adv. Mater. Interfaces 4 1600783Google Scholar

    [73]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096Google Scholar

    [74]

    Gan L, Luo Z 2013 ACS Nano 7 9480Google Scholar

    [75]

    Guo W, Jing F, Xiao J, Zhou C, Lin Y, Wang S 2016 Adv. Mater. 28 3152Google Scholar

    [76]

    Lin L, Li J, Ren H, Koh A L, Kang N, Peng H, Xu H Q, Liu Z 2016 ACS Nano 10 2922Google Scholar

    [77]

    Wang H, Xue X, Jiang Q, Wang Y, Geng D, Cai L, Wang L, Xu Z, Yu G 2019 J. Am. Chem. Soc. 141 11004Google Scholar

    [78]

    Zhu J, Xu H, Zou G, Zhang W, Chai R, Choi J, Wu J, Liu H, Shen G, Fan H 2019 J. Am. Chem. Soc. 141 5392Google Scholar

    [79]

    Kim H, Ovchinnikov D, Deiana D, Unuchek D, Kis A 2017 Nano Lett. 17 5056Google Scholar

    [80]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z, Li X, Yu H, Zhu X, Yang R, Shi D, Lin X, Guo J, Bai X, Zhang G 2015 J. Am. Chem. Soc. 137 15632Google Scholar

    [81]

    Chen J, Tang W, Tian B, Liu B, Zhao X, Liu Y, Ren T, Liu W, Geng D, Jeong H Y, Shin H S, Zhou W, Loh K P 2016 Adv. Sci. 3 1500033Google Scholar

    [82]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [83]

    Vlassiouk I V, Stehle Y, Pudasaini P R, Unocic R R, Rack P D, Baddorf A P, Ivanov I N, Lavrik N V, List F, Gupta N, Bets K V, Yakobson B I, Smirnov S N 2018 Nat. Mater. 17 318Google Scholar

    [84]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [85]

    Chung J W, Dai Z R, Ohuchi F S 1998 J. Cryst. Growth 186 137Google Scholar

    [86]

    Cun H, Macha M, Kim H, Liu K, Zhao Y, LaGrange T, Kis A, Radenovic A 2019 Nano Res. 12 2646Google Scholar

    [87]

    Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano 9 2080Google Scholar

    [88]

    Ishihara S, Hibino Y, Sawamoto N, Machida H, Wakabayashi H, Ogura A 2018 MRS Adv. 3 379Google Scholar

    [89]

    Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano. 9 2080

    [90]

    Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243Google Scholar

    [91]

    Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. USA 110 20386Google Scholar

    [92]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [93]

    Gao Y, Hong Y L, Yin L C, Wu Z, Yang Z, Chen M L, Liu Z, Ma T, Sun D M, Ni Z, Ma X L, Cheng H M, Ren W 2017 Adv. Mater. 29 1700990Google Scholar

    [94]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286Google Scholar

    [95]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [96]

    Nguyen V L, Perello D J, Lee S, Nai C T, Shin B G, Kim J G, Park H Y, Jeong H Y, Zhao J, Vu Q A, Lee S H, Loh K P, Jeong S Y, Lee Y H 2016 Adv. Mater. 28 8177Google Scholar

    [97]

    Deng B, Pang Z, Chen S, Li X, Meng C, Li J, Liu M, Wu J, Qi Y, Dang W, Yang H, Zhang Y, Zhang J, Kang N, Xu H, Fu Q, Qiu X, Gao P, Wei Y, Liu Z, Peng H L 2017 ACS Nano 11 12337Google Scholar

    [98]

    Nguyen V L, Shin B G, Duong D L, Kim S T, Perello D, Lim Y J, Yuan Q H, Ding F, Jeong H Y, Shin H S, Lee S M, Chae S H, Vu Q A, Lee S H, Lee Y H 2015 Adv. Mater. 27 1376Google Scholar

    [99]

    Jin S, Huang M, Kwon Y, Zhang L, Li B W, Oh S, Dong J, Luo D, Biswal M, Cunning B V, Bakharev P V, Moon I, Yoo W J, Camacho-Mojica D C, Kim Y J, Lee S H, Wang B, Seong W K, Saxena M, Ding F, Shin H J, Ruoff R S 2018 Science 362 1021Google Scholar

    [100]

    Wu M, Zhang Z, Xu X, Zhang Z, Duan Y, Dong J, Qiao R, You S, Wang L, Qi J, Zou D, Shang N, Yang Y, Li H, Zhu L, Sun J, Yu H, Gao P, Bai X, Jiang Y, Wang Z J, Ding F, Yu D, Wang E, Liu K 2020 Nature 581 406Google Scholar

    [101]

    Li Y, Sun L, Chang Z, Liu H, Wang Y, Liang Y, Chen B, Ding Q, Zhao Z, Wang R, Wei Y, Peng H, Lin L, Liu Z 2020 Adv. Mater. 32 2002034Google Scholar

    [102]

    Zhang J, Lin L, Jia K, Sun L, Peng H, Liu Z 2020 Adv. Mater. 32 1903266Google Scholar

    [103]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [104]

    Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar

    [105]

    Li J, Li Y, Yin J, Ren X, Liu X, Jin C, Guo W 2016 Small 12 3645Google Scholar

    [106]

    Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H P, Pan S, Li R, Chao T A, Chueh W C, Zhang Y, Fu Q, Yakobson B I, Chang W H, Li L J 2020 Nature 579 219Google Scholar

    [107]

    Chen L, Liu B, Ge M, Ma Y, Abbas A N, Zhou C 2015 ACS Nano 9 8368Google Scholar

    [108]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [109]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001Google Scholar

    [110]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [111]

    Choi S H, Kim H J, Song B, Kim Y I, Han G, Nguyen H T T, Ko H, Boandoh S, Choi J H, Oh C S, Cho H J, Jin J W, Won Y S, Lee B H, Yun S J, Shin B G, Jeong H Y, Kim Y M, Han Y K, Lee Y H, Kim S M, Kim K K 2021 Adv. Mater. 33 2006601Google Scholar

    [112]

    Xue X, Xu Q, Wang H, Liu S, Jiang Q, Yu Z, Zhou X, Ma T, Wang L, Yu G 2019 Chem. Mater. 31 1231Google Scholar

    [113]

    Zeng M, Wang L, Liu J, Zhang T, Xue H, Xiao Y, Qin Z, Fu L 2016 J. Am. Chem. Soc. 138 7812Google Scholar

    [114]

    Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar

  • 图 1  大尺寸二维单晶制备3个关键调控方向

    Fig. 1.  Schematic illustration of three key aspects for the growth of large-size 2D single crystals.

    图 2  二维材料单畴生长调控 (a)氧辅助铜箔上石墨烯晶畴生长的光学图像[47]; (b)石墨烯晶畴生长速率dr/dt与1/T的对数曲线[47]; (c)控制单个晶畴形核并长大示意图; (d)局域氧元素供应方法的实验设计示意图[84]; (e)局域氟元素供应反应能量曲线[56]; (f)同位素标记局域氟辅助石墨烯晶畴生长速率结果[56]; (g)金箔上WSe2晶畴快速生长光学结果[93]

    Fig. 2.  Growth modulation of 2D single nucleus: (a) Optical image of centimeter-scale graphene domains on oxygen-rich Cu exposed to O2[47]; (b) logarithmic plots of graphene domain growth rate dr/dt versus 1/T[47]; (c) schematic illustration of controlling single nucleus growth; (d) schematic illustration of the experimental design of local-oxygen-feeding method[84]; (e) the corresponding energy profile of carbon species with the assistance of local fluorine[56]; (f) isotope-labelled Raman mapping of the 2D band for graphene domain grown by local fluorine supply[56]; (g) optical image of single-crystal monolayer WSe2 domain grown on an Au foil[93]

    图 3  单晶衬底制备 (a) 2 in蓝宝石衬底上沉积Cu(111)薄膜[96]; (b) Cu(111)表面原子力显微镜图像[96]; (c)温度梯度驱动单晶Cu(111)箔片实验设计图[55]; (d)退火获得的5 cm×50 cm大尺寸单晶Cu(111)箔[55]; (e)氧化层界面驱动A4纸尺寸高指数Cu(hkl)制备[100]; (f)高指数单晶铜箔电子背散射衍射反极图[101]

    Fig. 3.  Preparation of single-crystal substrate: (a) A photograph of 2 in Cu(111) film on sapphire[96]; (b) atomic force microscopic image of Cu(111) film with noncontact mode[96]; (c) schematic illustration of experimental design for the continuous production of single-crystal Cu(111) foil with a hot temperature zone at the central area of the furnace tube[55]; (d) the obtained 5 cm×50 cm single-crystal Cu(111) foil[55]; (e) the preparation of high-index Cu(hkl) with typical size of 35 cm×21 cm driven by oxide layer[100]; (f) electron backscatter diffraction inverse pole figure maps of the as-prepared high-index single-crystal Cu foils[101].

    图 4  二维单晶多畴取向控制 (a) Cu(111)上单晶石墨烯晶畴取向排列[55]; (b) Cu(110)表面$\left\langle {211} \right\rangle $方向原子台阶只倾向与hBN的N原子进行结合[58]; (c) Cu(110)衬底上hBN晶畴单一取向排列[58]; (d)在蓝宝石衬底上单层MoS2晶畴拼接的高分辨透射电子显微镜图像[109]; (e) Au(111)衬底上台阶诱导MoS2形核以及外延取向控制示意图[108]; (f) WS2晶畴沿Al2O3$\langle {1 \bar{1}01} \rangle$台阶方向形核生长的原子力显微镜结果[60]; (g) 2 in蓝宝石衬底上满覆盖单层WS2照片[60]

    Fig. 4.  Alignment control of 2D single-crystal domains: (a) Optical image of unidirectionally aligned graphene domains grown on Cu(111)[55]; (b) Cu$\left\langle {211} \right\rangle $ atomic steps tend to connect with the N atom of hBN[58]; (c) scanning electron microscopic image of as-grown aligned hBN domains on the Cu(110) substrate[58]; (d) high-resolution transmission electron microscopic image of the stitched domain boundary in monolayer MoS2 on sapphire substrate[109]; (e) schematic illustration of MoS2 nucleation and epitaxial growth process on Au(111) substrate[108]; (f) WS2 domain grown along the Al2O3$\langle {1 \bar{1}01} \rangle$ steps[60]; (g) photograph of the full-coverage WS2 monolayer on a 2 in sapphire substrate[60].

  • [1]

    Keyes R W 2005 Rep. Prog. Phys. 68 2701Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [4]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [5]

    Li M Y, Su S K, Wong H S P, Li L J 2019 Nature 567 169Google Scholar

    [6]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 1500222Google Scholar

    [7]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [8]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [9]

    Hong H, Liu C, Cao T, Jin C, Wang S, Wang F, Liu K 2017 Adv. Mater. Interfaces 4 1601054Google Scholar

    [10]

    Liu C, Hong H, Wang Q, Liu P, Zuo Y, Liang J, Cheng Y, Zhou X, Wang J, Zhao Y, Xiong J, Xiang B, Zhang J, Liu K 2019 Nanoscale 11 17195Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [13]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Castro Neto A H 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [14]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [15]

    Liu B, Ma Y, Zhang A, Chen L, Abbas A N, Liu Y, Shen C, Wan H, Zhou C 2016 ACS Nano 10 5153Google Scholar

    [16]

    Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat 1 54Google Scholar

    [17]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [18]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [19]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [20]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [21]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [22]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [23]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [24]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [25]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [26]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [27]

    Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J, Kim K 2012 Science 336 1140Google Scholar

    [28]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photonics 11 366Google Scholar

    [29]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H 2019 Nat. Commun. 10 3161Google Scholar

    [30]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [31]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [32]

    Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J, Zhu H 2018 Chem. Soc. Rev. 47 4981Google Scholar

    [33]

    Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987Google Scholar

    [34]

    Stockbarger D C 1936 Rev. Sci. Instrum. 7 133Google Scholar

    [35]

    Czocbralski J 1918 Z. Phys. Chem. 92 219Google Scholar

    [36]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Sciences 306 666

    [37]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [38]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [39]

    Cai X, Luo Y, Liu B, Cheng H M 2018 Chem. Soc. Rev. 47 6224Google Scholar

    [40]

    Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar

    [41]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [42]

    Halim U, Zheng C R, Chen Y, Lin Z, Jiang S, Cheng R, Huang Y, Duan X 2013 Nat. Commun. 4 2213Google Scholar

    [43]

    Coleman J N 2013 Acc. Chem. Res. 46 14Google Scholar

    [44]

    Cui X, Zhang C, Hao R, Hou Y 2011 Nanoscale 3 2118Google Scholar

    [45]

    Ciesielski A, Samori P 2014 Chem. Soc. Rev. 43 381Google Scholar

    [46]

    Zhang C, Tan J, Pan Y, Cai X, Zou X, Cheng H M, Liu B 2020 Natl. Sci. Rev. 7 324Google Scholar

    [47]

    Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar

    [48]

    Yan K, Fu L, Peng H, Liu Z 2013 Acc. Chem. Res. 46 2263Google Scholar

    [49]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. USA 109 7992Google Scholar

    [50]

    Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110Google Scholar

    [51]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [52]

    Li E, Wang D, Fan P, Zhang R, Zhang Y Y, Li G, Mao J, Wang Y, Lin X, Du S, Gao H J 2018 Nano Res. 11 5858Google Scholar

    [53]

    Chen M W, Ovchinnikov D, Lazar S, Pizzochero M, Whitwick M B, Surrente A, Baranowski M, Sanchez O L, Gillet P, Plochocka P, Yazyev O V, Kis A 2017 ACS Nano 11 6355Google Scholar

    [54]

    Nakhaie S, Wofford J M, Schumann T, Jahn U, Ramsteiner M, Hanke M, Lopes J M J, Riechert H 2015 Appl. Phys. Lett. 106 213108Google Scholar

    [55]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [56]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nat. Chem. 11 730Google Scholar

    [57]

    Zhang Z, Qi J, Zhao M, Shang N, Cheng Y, Qiao R, Zhang Z, Ding M, Li X, Liu K, Xu X, Liu K, Liu C, Wu M 2020 Chinese Phys. Lett. 37 108101Google Scholar

    [58]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [59]

    Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y, Wang X 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [60]

    Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z, Ding D, Hong H, Zheng P, Zhang Z, Zhang Z, Zhang S, Cui G, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y, Xue G, Fang X, Tian J, Wu M, Guo Y, Yao Z, Jiao Q, Liu L, Gao P, Li Q, Yang R, Zhang G, Tang Z, Yu D, Wang E, Lu J, Zhao Y, Wu S, Ding F, Liu K 2022 Nat. Nanotechnol. 17 33Google Scholar

    [61]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443Google Scholar

    [62]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389Google Scholar

    [63]

    Ruiz-Vargas C S, Zhuang H L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G, Park J 2011 Nano Lett. 11 2259Google Scholar

    [64]

    Hammer B, Norskov J K 1995 Nature 376 238Google Scholar

    [65]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101Google Scholar

    [66]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [67]

    Han G H, Gunes F, Bae J J, Kim E S, Chae S J, Shin H J, Choi J Y, Pribat D, Lee Y H 2011 Nano Lett. 11 4144Google Scholar

    [68]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627Google Scholar

    [69]

    Li X, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J. Am. Chem. Soc. 133 2816Google Scholar

    [70]

    Ding G, Zhu Y, Wang S, Gong Q, Sun L, Wu T, Xie X, Jiang M 2013 Carbon 53 321Google Scholar

    [71]

    Zeng M, Tan L, Wang J, Chen L, Rümmeli M H, Fu L 2014 Chem. Mater. 26 3637Google Scholar

    [72]

    Zang X, Zhou Q, Chang J, Teh K S, Wei M, Zettl A, Lin L 2017 Adv. Mater. Interfaces 4 1600783Google Scholar

    [73]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096Google Scholar

    [74]

    Gan L, Luo Z 2013 ACS Nano 7 9480Google Scholar

    [75]

    Guo W, Jing F, Xiao J, Zhou C, Lin Y, Wang S 2016 Adv. Mater. 28 3152Google Scholar

    [76]

    Lin L, Li J, Ren H, Koh A L, Kang N, Peng H, Xu H Q, Liu Z 2016 ACS Nano 10 2922Google Scholar

    [77]

    Wang H, Xue X, Jiang Q, Wang Y, Geng D, Cai L, Wang L, Xu Z, Yu G 2019 J. Am. Chem. Soc. 141 11004Google Scholar

    [78]

    Zhu J, Xu H, Zou G, Zhang W, Chai R, Choi J, Wu J, Liu H, Shen G, Fan H 2019 J. Am. Chem. Soc. 141 5392Google Scholar

    [79]

    Kim H, Ovchinnikov D, Deiana D, Unuchek D, Kis A 2017 Nano Lett. 17 5056Google Scholar

    [80]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z, Li X, Yu H, Zhu X, Yang R, Shi D, Lin X, Guo J, Bai X, Zhang G 2015 J. Am. Chem. Soc. 137 15632Google Scholar

    [81]

    Chen J, Tang W, Tian B, Liu B, Zhao X, Liu Y, Ren T, Liu W, Geng D, Jeong H Y, Shin H S, Zhou W, Loh K P 2016 Adv. Sci. 3 1500033Google Scholar

    [82]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [83]

    Vlassiouk I V, Stehle Y, Pudasaini P R, Unocic R R, Rack P D, Baddorf A P, Ivanov I N, Lavrik N V, List F, Gupta N, Bets K V, Yakobson B I, Smirnov S N 2018 Nat. Mater. 17 318Google Scholar

    [84]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [85]

    Chung J W, Dai Z R, Ohuchi F S 1998 J. Cryst. Growth 186 137Google Scholar

    [86]

    Cun H, Macha M, Kim H, Liu K, Zhao Y, LaGrange T, Kis A, Radenovic A 2019 Nano Res. 12 2646Google Scholar

    [87]

    Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano 9 2080Google Scholar

    [88]

    Ishihara S, Hibino Y, Sawamoto N, Machida H, Wakabayashi H, Ogura A 2018 MRS Adv. 3 379Google Scholar

    [89]

    Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano. 9 2080

    [90]

    Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243Google Scholar

    [91]

    Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. USA 110 20386Google Scholar

    [92]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [93]

    Gao Y, Hong Y L, Yin L C, Wu Z, Yang Z, Chen M L, Liu Z, Ma T, Sun D M, Ni Z, Ma X L, Cheng H M, Ren W 2017 Adv. Mater. 29 1700990Google Scholar

    [94]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286Google Scholar

    [95]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [96]

    Nguyen V L, Perello D J, Lee S, Nai C T, Shin B G, Kim J G, Park H Y, Jeong H Y, Zhao J, Vu Q A, Lee S H, Loh K P, Jeong S Y, Lee Y H 2016 Adv. Mater. 28 8177Google Scholar

    [97]

    Deng B, Pang Z, Chen S, Li X, Meng C, Li J, Liu M, Wu J, Qi Y, Dang W, Yang H, Zhang Y, Zhang J, Kang N, Xu H, Fu Q, Qiu X, Gao P, Wei Y, Liu Z, Peng H L 2017 ACS Nano 11 12337Google Scholar

    [98]

    Nguyen V L, Shin B G, Duong D L, Kim S T, Perello D, Lim Y J, Yuan Q H, Ding F, Jeong H Y, Shin H S, Lee S M, Chae S H, Vu Q A, Lee S H, Lee Y H 2015 Adv. Mater. 27 1376Google Scholar

    [99]

    Jin S, Huang M, Kwon Y, Zhang L, Li B W, Oh S, Dong J, Luo D, Biswal M, Cunning B V, Bakharev P V, Moon I, Yoo W J, Camacho-Mojica D C, Kim Y J, Lee S H, Wang B, Seong W K, Saxena M, Ding F, Shin H J, Ruoff R S 2018 Science 362 1021Google Scholar

    [100]

    Wu M, Zhang Z, Xu X, Zhang Z, Duan Y, Dong J, Qiao R, You S, Wang L, Qi J, Zou D, Shang N, Yang Y, Li H, Zhu L, Sun J, Yu H, Gao P, Bai X, Jiang Y, Wang Z J, Ding F, Yu D, Wang E, Liu K 2020 Nature 581 406Google Scholar

    [101]

    Li Y, Sun L, Chang Z, Liu H, Wang Y, Liang Y, Chen B, Ding Q, Zhao Z, Wang R, Wei Y, Peng H, Lin L, Liu Z 2020 Adv. Mater. 32 2002034Google Scholar

    [102]

    Zhang J, Lin L, Jia K, Sun L, Peng H, Liu Z 2020 Adv. Mater. 32 1903266Google Scholar

    [103]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [104]

    Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar

    [105]

    Li J, Li Y, Yin J, Ren X, Liu X, Jin C, Guo W 2016 Small 12 3645Google Scholar

    [106]

    Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H P, Pan S, Li R, Chao T A, Chueh W C, Zhang Y, Fu Q, Yakobson B I, Chang W H, Li L J 2020 Nature 579 219Google Scholar

    [107]

    Chen L, Liu B, Ge M, Ma Y, Abbas A N, Zhou C 2015 ACS Nano 9 8368Google Scholar

    [108]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [109]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001Google Scholar

    [110]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [111]

    Choi S H, Kim H J, Song B, Kim Y I, Han G, Nguyen H T T, Ko H, Boandoh S, Choi J H, Oh C S, Cho H J, Jin J W, Won Y S, Lee B H, Yun S J, Shin B G, Jeong H Y, Kim Y M, Han Y K, Lee Y H, Kim S M, Kim K K 2021 Adv. Mater. 33 2006601Google Scholar

    [112]

    Xue X, Xu Q, Wang H, Liu S, Jiang Q, Yu Z, Zhou X, Ma T, Wang L, Yu G 2019 Chem. Mater. 31 1231Google Scholar

    [113]

    Zeng M, Wang L, Liu J, Zhang T, Xue H, Xiao Y, Qin Z, Fu L 2016 J. Am. Chem. Soc. 138 7812Google Scholar

    [114]

    Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar

  • [1] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [2] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [3] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [4] 常超, 寇金宗, 徐小志. 原子台阶调控二维单晶材料生长. 物理学报, 2023, 72(20): 208101. doi: 10.7498/aps.72.20230887
    [5] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [6] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [7] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [8] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [9] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [10] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [11] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [12] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [13] 陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩. 硅基低位错密度厚锗外延层的UHV/CVD法生长. 物理学报, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [14] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [15] 李美亚, 汪 晶, 刘 军, 于本方, 郭冬云, 赵兴中. YBa2Cu3O7-x涂层导体的外延生长和性能对CeO2缓冲层的依赖性. 物理学报, 2008, 57(5): 3132-3137. doi: 10.7498/aps.57.3132
    [16] 喻利花, 董松涛, 董师润, 许俊华. AlN/Si3N4纳米多层膜的外延生长与力学性能. 物理学报, 2008, 57(8): 5151-5158. doi: 10.7498/aps.57.5151
    [17] 孔 明, 魏 仑, 董云杉, 李戈扬. TiN/Al2O3纳米多层膜的共格外延生长及超硬效应. 物理学报, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [18] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [19] 胡海宁, 陈京兰, 吴光恒. 电化学沉积Fe单晶纳米线生长中的取向控制. 物理学报, 2005, 54(1): 389-392. doi: 10.7498/aps.54.389
    [20] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟. 物理学报, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
计量
  • 文章访问数:  6391
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-01-22
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回