搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子辐照作用下浮栅单元的数据翻转及错误退火

刘晔 郭红霞 琚安安 张凤祁 潘霄宇 张鸿 顾朝桥 柳奕天 冯亚辉

引用本文:
Citation:

质子辐照作用下浮栅单元的数据翻转及错误退火

刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉

Data inversion and erroneous annealing of floating gate cell under proton radiation

Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui
PDF
HTML
导出引用
  • 本文利用60 MeV质子束流, 开展了NAND (not and) flash存储器的质子辐照实验, 获取了浮栅单元的单粒子翻转截面, 分析了浮栅单元错误的退火规律, 研究了质子辐照对浮栅单元的数据保存能力的影响. 实验结果表明, 浮栅单元单粒子翻转截面随质子能量的升高而增大, 随质子注量的升高而减小. 浮栅单元错误随着退火时间的推移持续增多, 该效应在低能量质子入射时更为明显. 经质子辐照后, 浮栅单元的数据保存能力有明显的退化. 分析认为高能质子通过与靶原子的核反应, 间接电离导致浮栅单元发生单粒子翻转, 翻转截面与质子注量的相关性是因为浮栅单元单粒子敏感性的差异. 质子引起的非电离损伤会在隧穿氧化层形成部分永久性的缺陷损伤, 产生可以泄漏浮栅电子的多辅助陷阱导电通道, 导致浮栅单元错误增多及数据保存能力退化.
    In this paper, the 60-MeV proton beam is used to carry out the proton irradiation experiment on NAND (not and) flash memory, the single-event-upset cross section data of the floating gate cell are obtained, the annealing rule of the floating gate cell errors is analyzed, and the effect of proton irradiation on the data retention capability of floating gate cells is studied. The obtained results are as follows. The single-event-upset cross section of the floating gate cell increases with the increase of proton energy, and decreases with the increase of proton fluence. The floating gate cell errors continue to increase over time, and this effect is more pronounced when low energy protons are incident. After proton irradiation, the data retention capability of the floating gate cell is significantly degraded. The analysis suggests that the high energy protons are indirectly ionized through the nuclear reaction with the target atom, causing single-event-upset of the floating gate cell. The correlation between the upset cross section and the proton fluence is due to the difference in single-event-effect sensitivity of the floating gate cell. The proton-induced non-ionizing damage can form partially permanent defect damage in the tunnel oxide layer, creating multiple auxiliary trap channels that can leak floating gate electrons, resulting in the increase of floating gate cell errors and the degradation of data retention capability.
      通信作者: 郭红霞, guohxnint@126.com
      Corresponding author: Guo Hong-Xia, guohxnint@126.com
    [1]

    Gerardin S, Bagatin M, Paccagnella A, Ferlet-Cavrois V, Frost C D 2014 IEEE Trans. Nucl. Sci. 61 1799Google Scholar

    [2]

    Peng C, Chen W, Luo Y H, Zhang F Q, Tang X B, Sheng J K, Ding L L, Wang Z B 2019 Jpn. J. Appl. Phys. 58 126002Google Scholar

    [3]

    Cao Y, Tian G L, Sandip M, Bi J S, Xi K, Li B 2021 Semicond. Sci. Technol. 36 045013Google Scholar

    [4]

    Oldham T R, Friendlich M, Carts M A, Seidleck C M, Label K A 2011 IEEE Trans. Nucl. Sci. 56 2904Google Scholar

    [5]

    Schwartz H R, Nichols D K Johnston A H 1997 IEEE Trans. Nucl. Sci. 44 2315Google Scholar

    [6]

    曹杨, 习凯, 徐彦楠, 李梅, 李博, 毕津顺, 刘明 2019 物理学报 68 038501Google Scholar

    Cao Y, Xi K, Xu Y N, Li M, Li B, Bi J S, Liu M 2019 Acta Phys. Sin. 68 038501Google Scholar

    [7]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M 2006 IEEE Trans. Nucl. Sci. 53 3349Google Scholar

    [8]

    Gerardin S, Bagatin M, Paccagnella A, Cellere G, Visconti A, Bonanomi M, Hjalmarsson A, Prokofiev A V 2010 IEEE Trans. Nucl. Sci. 57 3199Google Scholar

    [9]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M, Virtanen A 2008 IEEE Trans. Nucl. Sci. 55 2042Google Scholar

    [10]

    Irom F, Nguyen D N, Bagatin M, Cellere G, Gerardin S, Paccagnella A 2010 IEEE Trans. Nucl. Sci. 57 266Google Scholar

    [11]

    Guo J L, Du G H, Bi J S, Liu W J, Wu R Q, Chen H, Wei J Z, Li Y N, Sheng L N, Liu X J, Ma S Y 2017 Nucl. Instrum. Meth. B 404 250Google Scholar

    [12]

    Gerardin S, Bagatin M, Paccagnella A, Schwank J R, Shaneyfelt M R, Blackmore E W 2012 IEEE Trans. Nucl. Sci. 59 838Google Scholar

    [13]

    Bagatin M, Gerardin S, Paccagnella A, Ferlet-Cavrois V, Schwank J R, Shaneyfelt M R, Visconti A 2013 IEEE Trans. Nucl. Sci. 60 4130Google Scholar

    [14]

    Chen D, Wilcox E, Ladbury R L, Kim H, Phan A, Seidleck C, Label K A 2017 IEEE Trans. Nucl. Sci. 64 332Google Scholar

    [15]

    彭聪 2020 硕士学位论文 (南京: 南京航空航天大学)

    Peng C 2020 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [16]

    Bagatin M, Gerardin S, Paccagnella A 2012 IEEE Trans. Nucl. Sci. 59 2785Google Scholar

    [17]

    Bi J S, Xi K, Li B, Wang H, Ji L L, Li J, Liu M 2018 Chinese Phys. B 27 098501Google Scholar

    [18]

    殷亚楠 2018 博士学位论文 (北京: 中国科学院大学)

    Yin Y N 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [19]

    Guertin S M, Nguyen D M, Patterson J D 2006 IEEE Trans. Nucl. Sci. 53 3518Google Scholar

    [20]

    何安林 2016 博士学位论文 (北京: 中国原子能科学研究院)

    He A L 2016 Ph. D. Dissertation (Beijing: China institute of atomic energy) (in Chinese)

    [21]

    Stapor W J, Meyers J P, Langworthy J B, Petersen E L 1990 IEEE Trans. Nucl. Sci. 37 1966Google Scholar

    [22]

    赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版社) 第21页

    Lai Z W 1998 Anti-radiation Electronics—Radiation Effects and Hardening Principles (Beijing: National Defense Industry Press) p21 (in Chinese)

    [23]

    Cellere G, Pellati P, Chimenton A, Wyss J, Modelli A, Larcher L, Paccagnella A 2001 IEEE Trans. Nucl. Sci. 48 2222Google Scholar

    [24]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M, Candelori A 2004 IEEE Trans. Nucl. Sci. 51 3304Google Scholar

  • 图 1  25 nm SLC阵列浮栅单元的TEM横截面

    Fig. 1.  TEM cross-section of 25 nm SLC floating cells array.

    图 2  不同能量的质子辐照下浮栅单元SEU截面

    Fig. 2.  Single event upset cross section of floating gate cells irradiated by protons at different energy levels.

    图 3  不同能量质子与Si的核反应截面[20]

    Fig. 3.  Cross section of nuclear reaction between protons at different energy levels and silicon.[20]

    图 4  不同注量的质子辐照下浮栅单元SEU截面

    Fig. 4.  Single event upset cross section of floating gate cells irradiated by protons at different fluence levels.

    图 5  浮栅单元阈值电压的分布示意图 (a) 辐照前; (b) 辐照后

    Fig. 5.  Schematic illustrations of floating gate cell distribution vs. threshold voltage: (a) Before the irradiation; (b) after the irradiation.

    图 6  不同机制影响下的浮栅单元阈值电压变化示意图

    Fig. 6.  Schematic illustrations of threshold voltage changes of floating gate cells under the influence of different mechanisms.

    图 7  不同能量质子辐照后45天内浮栅单元错误变化

    Fig. 7.  Annealing of floating gate errors within 45 days after proton irradiation at different energy levels.

    图 8  单位深度的非电离能量损失随质子能量的变化

    Fig. 8.  The non-ionizing energy loss per unit depth varies with the proton energy.

    图 9  重新写入不同数据后45天内浮栅单元错误变化

    Fig. 9.  Annealing of floating gate errors within 45 days after rewriting different data.

    图 10  重新写入不同数据后浮栅单元阈值电压变化示意图

    Fig. 10.  Schematic illustration of threshold voltage changes of floating gate cells after rewriting different data.

    表 1  实验所用flash存储器信息

    Table 1.  Flash memory information used in the experiment.

    器件型号标码特征
    尺寸/nm
    存储
    容量/G
    MT29F32G08ABAAA(SLC)1950 1-72532
    MT29F32G08CBACA(MLC)1550 1-22532
    下载: 导出CSV
  • [1]

    Gerardin S, Bagatin M, Paccagnella A, Ferlet-Cavrois V, Frost C D 2014 IEEE Trans. Nucl. Sci. 61 1799Google Scholar

    [2]

    Peng C, Chen W, Luo Y H, Zhang F Q, Tang X B, Sheng J K, Ding L L, Wang Z B 2019 Jpn. J. Appl. Phys. 58 126002Google Scholar

    [3]

    Cao Y, Tian G L, Sandip M, Bi J S, Xi K, Li B 2021 Semicond. Sci. Technol. 36 045013Google Scholar

    [4]

    Oldham T R, Friendlich M, Carts M A, Seidleck C M, Label K A 2011 IEEE Trans. Nucl. Sci. 56 2904Google Scholar

    [5]

    Schwartz H R, Nichols D K Johnston A H 1997 IEEE Trans. Nucl. Sci. 44 2315Google Scholar

    [6]

    曹杨, 习凯, 徐彦楠, 李梅, 李博, 毕津顺, 刘明 2019 物理学报 68 038501Google Scholar

    Cao Y, Xi K, Xu Y N, Li M, Li B, Bi J S, Liu M 2019 Acta Phys. Sin. 68 038501Google Scholar

    [7]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M 2006 IEEE Trans. Nucl. Sci. 53 3349Google Scholar

    [8]

    Gerardin S, Bagatin M, Paccagnella A, Cellere G, Visconti A, Bonanomi M, Hjalmarsson A, Prokofiev A V 2010 IEEE Trans. Nucl. Sci. 57 3199Google Scholar

    [9]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M, Virtanen A 2008 IEEE Trans. Nucl. Sci. 55 2042Google Scholar

    [10]

    Irom F, Nguyen D N, Bagatin M, Cellere G, Gerardin S, Paccagnella A 2010 IEEE Trans. Nucl. Sci. 57 266Google Scholar

    [11]

    Guo J L, Du G H, Bi J S, Liu W J, Wu R Q, Chen H, Wei J Z, Li Y N, Sheng L N, Liu X J, Ma S Y 2017 Nucl. Instrum. Meth. B 404 250Google Scholar

    [12]

    Gerardin S, Bagatin M, Paccagnella A, Schwank J R, Shaneyfelt M R, Blackmore E W 2012 IEEE Trans. Nucl. Sci. 59 838Google Scholar

    [13]

    Bagatin M, Gerardin S, Paccagnella A, Ferlet-Cavrois V, Schwank J R, Shaneyfelt M R, Visconti A 2013 IEEE Trans. Nucl. Sci. 60 4130Google Scholar

    [14]

    Chen D, Wilcox E, Ladbury R L, Kim H, Phan A, Seidleck C, Label K A 2017 IEEE Trans. Nucl. Sci. 64 332Google Scholar

    [15]

    彭聪 2020 硕士学位论文 (南京: 南京航空航天大学)

    Peng C 2020 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [16]

    Bagatin M, Gerardin S, Paccagnella A 2012 IEEE Trans. Nucl. Sci. 59 2785Google Scholar

    [17]

    Bi J S, Xi K, Li B, Wang H, Ji L L, Li J, Liu M 2018 Chinese Phys. B 27 098501Google Scholar

    [18]

    殷亚楠 2018 博士学位论文 (北京: 中国科学院大学)

    Yin Y N 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [19]

    Guertin S M, Nguyen D M, Patterson J D 2006 IEEE Trans. Nucl. Sci. 53 3518Google Scholar

    [20]

    何安林 2016 博士学位论文 (北京: 中国原子能科学研究院)

    He A L 2016 Ph. D. Dissertation (Beijing: China institute of atomic energy) (in Chinese)

    [21]

    Stapor W J, Meyers J P, Langworthy J B, Petersen E L 1990 IEEE Trans. Nucl. Sci. 37 1966Google Scholar

    [22]

    赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版社) 第21页

    Lai Z W 1998 Anti-radiation Electronics—Radiation Effects and Hardening Principles (Beijing: National Defense Industry Press) p21 (in Chinese)

    [23]

    Cellere G, Pellati P, Chimenton A, Wyss J, Modelli A, Larcher L, Paccagnella A 2001 IEEE Trans. Nucl. Sci. 48 2222Google Scholar

    [24]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M, Candelori A 2004 IEEE Trans. Nucl. Sci. 51 3304Google Scholar

  • [1] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [2] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [3] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [4] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [5] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [6] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [7] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [8] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [9] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [10] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性. 物理学报, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [11] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [12] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [13] 曾骏哲, 何承发, 李豫东, 郭旗, 文林, 汪波, 玛丽娅, 王海娇. 电荷耦合器件在质子辐照下的粒子输运仿真与效应分析. 物理学报, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [14] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [16] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [17] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [18] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [19] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  3967
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-01-28
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-06-05

/

返回文章
返回