搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米成核点辅助结晶对钙钛矿光电探测器性能的影响

孙雪 黄锋 刘桂雄 苏子生

引用本文:
Citation:

纳米成核点辅助结晶对钙钛矿光电探测器性能的影响

孙雪, 黄锋, 刘桂雄, 苏子生

Effect of nano-nucleation sites assisted crystallization on performance of perovskite photodetector

Sun Xue, Huang Feng, Liu Gui-Xiong, Su Zi-Sheng
PDF
HTML
导出引用
  • 有机无机杂化钙钛矿材料因具有可调节的带隙宽度、优异的载流子传输性能、可低温溶液法制备等优点, 近年来在光电器件的应用研究上受到了广泛的关注. 对于平面光电导型探测器, 电荷在两电极之间需横穿钙钛矿层, 由于钙钛矿晶体的形成能较低, 在晶界和薄膜表面易产生缺陷, 光生载流子被缺陷阻挡而加剧激子的非辐射复合, 造成器件光电性能下降. 本文通过在钙钛矿界面层下方引入微量的氧化石墨烯纳米片作为钙钛矿晶体的有效成核点, 使得钙钛矿晶体可依附于氧化石墨烯形核, 降低钙钛矿晶体成核势垒的同时与钙钛矿形成铅-氧键, 最终获得晶体颗粒增大、晶界数量减少、薄膜致密的钙钛矿层. 由于氧化石墨烯在玻璃基底上的含量极低, 大片玻璃基底裸露并与钙钛矿直接接触, 因此钙钛矿层应视为制备在玻璃基底上. 在氧化石墨烯纳米片的影响下钙钛矿与玻璃基底的接触更为紧密, 有效降低界面间的激子非辐射复合概率, 提高了界面间电荷传输性能. 最终, 在氧化石墨烯纳米片最优制备参数的影响下, 钙钛矿光电探测器光电流相比空白对照器件提高了1个数量级, 在3 V偏压下的开关电流比为5.22 × 103, 并且最优的光电探测器的光响应速度明显提高, 上升时间为9.6 ms, 下降时间为6.6 ms.
    Photodetector occupies an important position in the sensor family, but most of the photoelectric conversion materials of photodetectors are inorganic semiconductors, such as GaAs, GaN, Ge and Si, these inorganic semiconductors are usually prepared by complicated methods and high cost, and furthermore, they have poor mechanical flexibility. Organic-inorganic hybrid perovskite materials serving as visible-light sensitizers have the advantages of balanced electron and hole mobilities, adjustable bandgaps, high absorption coefficients, low temperature solution preparation, which make the materials a suitable candidate for inorganic semiconductors.For planar photodetectors, carriers have greater probabilities to be trapped by the defects in the perovskite films, therefore it is important to fabricate a high-quality perovskite film. However, owing to the low formation energy of perovskite crystals, defects prove to occur on the film surface and grain boundaries, which aggravate the performance of perovskite optoelectronic devices. In this work, we introduce a small quantity of graphene oxide nanosheets (GOSs) on bare glass substrate as effective nucleation sites of perovskite crystals. Owing to the extremely low density of GOSs and large exposed glass basement, the GOSs cannot be regarded as an interface layer. The existence of GOSs on smooth substance reduces the perovskite nucleation barrier, leading to a more preferential crystal growth in these locations, and binds tightly with glass substrate, which passivates the defects efficiently. Meanwhile, the element of O in the GOSs can create Pb–O bond with Pb in the CH3NH3PbI3, further improving the crystal of perovskite. On this basis, planner perovskite photodetector with a structure of glass/GOSs/CH3NH3PbI3/MoO3/Au is fabricated. By adjusting the concentration of GOSs deionized water dispersion under the same spin-coating condition, the photoelectric conversion performance of perovskite photodetector is enhanced. Under the influence of the optimal concentration of GOSs, photocurrent of the champion photodetector (1.15 × 10–6 A) is an order of magnitude higher than that of reference device without GOSs modified (3.58 × 10–7 A) at 3 V bias, leading to a high ON/OFF current ratio of 5.22 × 103. Besides, improved photoresponse speed is also found in the champion device, with a rise time of 9.6 ms and a decay time of 6.6 ms, respectively. The enhanced performance of GOSs modified perovskite photodetector can be attributed to the significantly reduced defects bringing about an enhanced charge separation and collection performance in the CH3NH3PbI3 films.By introducing extremely low quantity GOSs as the effective perovskite crystal nucleation sites, the perovskite crystallization and thin film can be effectively improved, leading to a positive effect on the performance of perovskite photodetector. This method has a certain universality, and therefore it has a reference value for other structures of perovskite photoelectric devices.
      通信作者: 苏子生, suzs@qztc.edu.cn
    • 基金项目: 福建省自然科学基金(批准号: 2020J01778)资助的课题.
      Corresponding author: Su Zi-Sheng, suzs@qztc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01778).
    [1]

    Šagátová A, Zaťko B, Nečas V, Dubecký F, Anh T L, Sedlačková K, Boháček P, Zápražný Z 2018 Appl. Surf. Sci. 461 3Google Scholar

    [2]

    Tian H J, Hu A Q, Liu Q L, He X Y, Guo X 2020 Adv. Opt. Mater. 8 1901741Google Scholar

    [3]

    Wu J H, Yang Z W, Qiu C Y, Zhang Y J, Wu Z Q, Yang J L, Lu Y H, Li J F, Yang D X, Hao R, Li E P, Yu G L, Lin S S 2018 Nanoscale 10 8023Google Scholar

    [4]

    Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma N D, Maurya K K, Husale S, Gupta G 2017 Appl. Phys. Lett. 110 103507Google Scholar

    [5]

    Liu L, Yang C, Patanè A, Yu Z, Yan F G, Wang K Y, Lu H X, Li J M, Zhao L X 2017 Nanoscale 9 8142Google Scholar

    [6]

    Takenaka M, Morii K, Sugiyama M, Nakano Y, Takagi S 2012 Opt. Express 20 8718Google Scholar

    [7]

    Hössbacher C, Salamin Y, Fedoryshyn Y, et al. 2017 IEEE Photonics Technol. Lett. 29 1760Google Scholar

    [8]

    Berencén Y, Prucnal S, Liu F, Skorupa I, Hübner R, Rebohle L, Zhou S Q, Schneider H, Helm M, Skorupa W 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H, Fédéli J M 2012 Opt. Express 20 1096Google Scholar

    [10]

    Yang J, Pi M Y, Zhang D K, Tang X S, Du J 2021 Chin. J. Lumin. 42 755Google Scholar

    [11]

    Gayen R N, Paul R, Biswas S 2020 Appl. Surf. Sci. 533 147149Google Scholar

    [12]

    Ozel K, Yildiz A 2021 Phys. Status. Solidi RRL 15 2100085Google Scholar

    [13]

    Chen W, Tang H, Chen Y, Heger J E, Li N, Kreuzer L P, Xie Y, Li D P, Anthony C, Pikramenou Z, Ng W K, Sun X W, Wang K, Müller-Buschbaum, P 2020 Nano Energy 78 105254Google Scholar

    [14]

    Wang Y D, Liu Y L, Cao S K, Wang J Z 2021 J. Mater. Chem. C 9 5302Google Scholar

    [15]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [16]

    Qu Z H, Ma F, Zhao Y, Chu X B, Yu S Q, You J B 2021 Chin. Phys. Lett. 38 107801Google Scholar

    [17]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [18]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [19]

    Zhu H L, Liang Z, Huo Z, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H 2018 Adv. Funct. Mater. 28 1706068Google Scholar

    [20]

    Li Y, Li Y, Shi J, Zhang H Y, Wu J H, Li D M, Luo Y H, Wu H J, Meng Q B 2018 Adv. Funct. Mater. 28 1705220Google Scholar

    [21]

    Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P 2019 Nano Energy 64 103914Google Scholar

    [22]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [23]

    Yang X, Qiu L, Cheng C, Wu Y Z, Ma Z F, Li D 2011 Angew. Chem. Int. Ed. 50 7325Google Scholar

    [24]

    Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R 2016 Chem. Rev. 116 5464Google Scholar

    [25]

    Ye S Y, Rao H X, Yan W B, Li Y H, Sun W H, Peng H T, Liu Z W, Bian Z Q, Li Y F, Huang C H 2016 Adv. Mater. 28 9648Google Scholar

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seol S I 2014 Nat. Mater. 13 897Google Scholar

    [27]

    Wang Z K, Li M, Yuan D X, Shi X B, Ma H, Liao L S 2015 ACS Appl. Mater. Interfaces 7 9645Google Scholar

    [28]

    Liu L, Xi Q Y, Gao G, Yang W, Zhou H, Zhao Y X, Wu C Q, Wang L D, Xu J W 2016 Sol. Energy Mater. Sol. Cells 157 937Google Scholar

    [29]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105Google Scholar

    [30]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 251

    [31]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nat. Mater. 11 76Google Scholar

    [32]

    Wang Y, Song Q G, Lin T, Fu Y, Sun X, Chu B, Jin F M, Zhao H F, Li W L, Su Z S, Li Y T 2017 Org. Electron. 49 355Google Scholar

    [33]

    Afzal A M, Bae I G, Aggarwal Y, Park J, Jeong H R, Choi E H, Park B 2021 Sci. Rep. 11 1Google Scholar

    [34]

    Hamilton M C, Martin S, Kanicki J 2004 IEEE Trans. Electron. Devices 51 887

    [35]

    Khan A A, Azam M, Eric D, Liang G X, Yu Z N 2020 J. Mater. Chem. C 8 2880Google Scholar

    [36]

    Wei Y Z, Feng G T, Mao P, Luan Y G, Zhuang J, Chen N L, Yang H X, Li W W, Yang S Y, Wang J Z 2020 ACS Appl. Mater. Interfaces 12 8826Google Scholar

    [37]

    Shan C W, Meng F, Yu J H, Wang Z X, Li W H, Fan D Y, Chen R, Ma H B, Li G Q, Kyaw A K K 2021 J. Mater. Chem. C 9 7632Google Scholar

    [38]

    Srivastava A, Jit S, Tripathi S 2021 IEEE Trans. Electron. Devices 68 IEEE Trans. Electron. Devices

    [39]

    Reddy K C S, Selamneni V, Rao M G S, Meza-Arroyo J, Sahatiya P, Ramirez-Bon R 2021 Appl. Surf. Sci. 568 150944Google Scholar

    [40]

    Dutta A, Medda A, Bera R, Sarkar K, Sain S, Kumar P, Patra A 2020 ACS Appl. Nano Mater. 3 4717

    [41]

    Bristow H, Jacoutot P, Scaccabarozzi A D, et al. 2020 ACS Appl. Mater. Interfaces 12 48836Google Scholar

  • 图 1  (a) 空白硅片以及 (b) 0.025, (c) 0.050, (d) 0.100 mg/mL GOSs分散液沉积在硅片表面的形貌

    Fig. 1.  The morphology of (a) bare silicon wafer and (b) 0.025, (c) 0.050, (d) 0.100 mg/ mL GOSs dispersion deposited on the surface of silicon wafer.

    图 2  (a) G0, (b) G0.025, (c) G0.05和(d) G0.1上生长的钙钛矿薄膜的平面扫描SEM照片

    Fig. 2.  Top-view SEM images of the CH3NH3PbI3 films on (a) G0, (b) G0.025, (c) G0.05 and (d) G0.1

    图 3  (a) G0和(b) G0.05上生长的钙钛矿薄膜的断面扫描SEM照片

    Fig. 3.  Cross-sectional SEM images of the CH3NH3PbI3 films on (a) G0 and (b) G0.05

    图 4  (a) 钙钛矿薄膜在G0, G0.025, G0.05以及G0.1上的XRD图谱; (b) 相应样品在14.2°和28.5°位置衍射峰放大图

    Fig. 4.  (a) XRD patterns of the CH3NH3PbI3 films on G0, G0.025, G0.05 and G0.1; (b) enlarged diffraction peaks at 14.2° and 28.5° of the corresponding samples.

    图 5  沉积在G0, G0.025, G0.05以及G0.1上的CH3NH3PbI3光吸收谱. 图中同时给出G0.1放大30倍的吸收光谱

    Fig. 5.  Absorbance spectra of the CH3NH3PbI3 films deposited on G0, G0.025, G0.05 and G0.1. The absorption spectrum of G0.1 amplified by 30 is also shown in the figure.

    图 6  钙钛矿光电探测器的(a)结构示意图和(b)器件实物照片

    Fig. 6.  (a) Schematic structure and (b) picture of the perovskite photodetector.

    图 7  (a)光照及(b)黑暗条件下G0, G0.025, G0.05和G0.1上制备的钙钛矿探测器的I-V曲线

    Fig. 7.  I-V curves of the photodetectors fabricated on G0, G0.025, G0.05 and G0.1 under (a) solar simulator irradiation and (b) dark, respectively.

    图 8  分别沉积在G0和G0.05上的钙钛矿光电探测器的RD*

    Fig. 8.  The R and D* of perovskite photodetectors fabricated on G0 and G0.05, respectively.

    图 9  G0和G0.05上制备的钙钛矿光电探测器的5个周期光响应行为

    Fig. 9.  Five cycles photoresponse behavious of the perovskite photodetectors fabricated on G0 and G0.05.

    表 1  不同基底上生长的钙钛矿薄膜XRD衍射峰半峰宽

    Table 1.  FWHM of the CH3NH3PbI3 XRD diffraction peaks deposited on different substrates.

    FWHM/(°)
    14.228.5
    G0/CH3NH3PbI30.1330.146
    G0.025/CH3NH3PbI30.1130.104
    G0.05/CH3NH3PbI30.1120.099
    G0.1/CH3NH3PbI30.1210.115
    下载: 导出CSV

    表 2  溶液法制备的可见光探测器性能

    Table 2.  Performance of visible light detector prepared by solution method.

    材料制备方法开关比/103响应度/(A·W–1)探测率/Jones响应时间Ref.
    Cs0.1FA0.2MA0.7Pb(I0.9Cl0.1)3-F4TCNQ旋涂6.945.4530 ms/600 ms[35]
    (BA)2(MA)n1PbnI3n+1旋涂1.3827.063.53 ms/3.78 ms[36]
    CH3NH3PbI3旋涂0.478.2 × 101218 ns[37]
    CH3NH3PbI3旋涂5.221.712.04 × 10149.6 ms/6.6 msThis work
    ZnO/pentacene旋涂0.362.17 × 1014[38]
    p-NiO/n-CdS水热法/旋涂~0.0052.60 × 10–29.21 × 1093.5 s[39]
    CdSe旋涂4.70.164 × 1011107 ms/110 ms[40]
    PTQ10∶O-IDTBR刮刀涂布0.033.3 × 101120 μs/25 μs[41]
    PTQ10∶O-FBR0.349.6 × 101212 μs/15 μs
    下载: 导出CSV
  • [1]

    Šagátová A, Zaťko B, Nečas V, Dubecký F, Anh T L, Sedlačková K, Boháček P, Zápražný Z 2018 Appl. Surf. Sci. 461 3Google Scholar

    [2]

    Tian H J, Hu A Q, Liu Q L, He X Y, Guo X 2020 Adv. Opt. Mater. 8 1901741Google Scholar

    [3]

    Wu J H, Yang Z W, Qiu C Y, Zhang Y J, Wu Z Q, Yang J L, Lu Y H, Li J F, Yang D X, Hao R, Li E P, Yu G L, Lin S S 2018 Nanoscale 10 8023Google Scholar

    [4]

    Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma N D, Maurya K K, Husale S, Gupta G 2017 Appl. Phys. Lett. 110 103507Google Scholar

    [5]

    Liu L, Yang C, Patanè A, Yu Z, Yan F G, Wang K Y, Lu H X, Li J M, Zhao L X 2017 Nanoscale 9 8142Google Scholar

    [6]

    Takenaka M, Morii K, Sugiyama M, Nakano Y, Takagi S 2012 Opt. Express 20 8718Google Scholar

    [7]

    Hössbacher C, Salamin Y, Fedoryshyn Y, et al. 2017 IEEE Photonics Technol. Lett. 29 1760Google Scholar

    [8]

    Berencén Y, Prucnal S, Liu F, Skorupa I, Hübner R, Rebohle L, Zhou S Q, Schneider H, Helm M, Skorupa W 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H, Fédéli J M 2012 Opt. Express 20 1096Google Scholar

    [10]

    Yang J, Pi M Y, Zhang D K, Tang X S, Du J 2021 Chin. J. Lumin. 42 755Google Scholar

    [11]

    Gayen R N, Paul R, Biswas S 2020 Appl. Surf. Sci. 533 147149Google Scholar

    [12]

    Ozel K, Yildiz A 2021 Phys. Status. Solidi RRL 15 2100085Google Scholar

    [13]

    Chen W, Tang H, Chen Y, Heger J E, Li N, Kreuzer L P, Xie Y, Li D P, Anthony C, Pikramenou Z, Ng W K, Sun X W, Wang K, Müller-Buschbaum, P 2020 Nano Energy 78 105254Google Scholar

    [14]

    Wang Y D, Liu Y L, Cao S K, Wang J Z 2021 J. Mater. Chem. C 9 5302Google Scholar

    [15]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [16]

    Qu Z H, Ma F, Zhao Y, Chu X B, Yu S Q, You J B 2021 Chin. Phys. Lett. 38 107801Google Scholar

    [17]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [18]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [19]

    Zhu H L, Liang Z, Huo Z, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H 2018 Adv. Funct. Mater. 28 1706068Google Scholar

    [20]

    Li Y, Li Y, Shi J, Zhang H Y, Wu J H, Li D M, Luo Y H, Wu H J, Meng Q B 2018 Adv. Funct. Mater. 28 1705220Google Scholar

    [21]

    Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P 2019 Nano Energy 64 103914Google Scholar

    [22]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [23]

    Yang X, Qiu L, Cheng C, Wu Y Z, Ma Z F, Li D 2011 Angew. Chem. Int. Ed. 50 7325Google Scholar

    [24]

    Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R 2016 Chem. Rev. 116 5464Google Scholar

    [25]

    Ye S Y, Rao H X, Yan W B, Li Y H, Sun W H, Peng H T, Liu Z W, Bian Z Q, Li Y F, Huang C H 2016 Adv. Mater. 28 9648Google Scholar

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seol S I 2014 Nat. Mater. 13 897Google Scholar

    [27]

    Wang Z K, Li M, Yuan D X, Shi X B, Ma H, Liao L S 2015 ACS Appl. Mater. Interfaces 7 9645Google Scholar

    [28]

    Liu L, Xi Q Y, Gao G, Yang W, Zhou H, Zhao Y X, Wu C Q, Wang L D, Xu J W 2016 Sol. Energy Mater. Sol. Cells 157 937Google Scholar

    [29]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105Google Scholar

    [30]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 251

    [31]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nat. Mater. 11 76Google Scholar

    [32]

    Wang Y, Song Q G, Lin T, Fu Y, Sun X, Chu B, Jin F M, Zhao H F, Li W L, Su Z S, Li Y T 2017 Org. Electron. 49 355Google Scholar

    [33]

    Afzal A M, Bae I G, Aggarwal Y, Park J, Jeong H R, Choi E H, Park B 2021 Sci. Rep. 11 1Google Scholar

    [34]

    Hamilton M C, Martin S, Kanicki J 2004 IEEE Trans. Electron. Devices 51 887

    [35]

    Khan A A, Azam M, Eric D, Liang G X, Yu Z N 2020 J. Mater. Chem. C 8 2880Google Scholar

    [36]

    Wei Y Z, Feng G T, Mao P, Luan Y G, Zhuang J, Chen N L, Yang H X, Li W W, Yang S Y, Wang J Z 2020 ACS Appl. Mater. Interfaces 12 8826Google Scholar

    [37]

    Shan C W, Meng F, Yu J H, Wang Z X, Li W H, Fan D Y, Chen R, Ma H B, Li G Q, Kyaw A K K 2021 J. Mater. Chem. C 9 7632Google Scholar

    [38]

    Srivastava A, Jit S, Tripathi S 2021 IEEE Trans. Electron. Devices 68 IEEE Trans. Electron. Devices

    [39]

    Reddy K C S, Selamneni V, Rao M G S, Meza-Arroyo J, Sahatiya P, Ramirez-Bon R 2021 Appl. Surf. Sci. 568 150944Google Scholar

    [40]

    Dutta A, Medda A, Bera R, Sarkar K, Sain S, Kumar P, Patra A 2020 ACS Appl. Nano Mater. 3 4717

    [41]

    Bristow H, Jacoutot P, Scaccabarozzi A D, et al. 2020 ACS Appl. Mater. Interfaces 12 48836Google Scholar

  • [1] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿. 物理学报, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [2] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [3] 黎宇坤, 董建军, 陈韬, 宋仔锋, 王强强, 邓克立, 邓博, 曹柱荣, 王峰. 对钙钛矿CsPbX3的X光波段外光电效应的研究. 物理学报, 2021, 70(19): 197901. doi: 10.7498/aps.70.20210651
    [4] 石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文. 金属卤化物钙钛矿纳米光电材料的研究进展. 物理学报, 2021, 70(8): 087303. doi: 10.7498/aps.70.20201842
    [5] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [6] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [7] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [8] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性. 物理学报, 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [9] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [10] 刘晓敏, 李亦回, 王兴涛, 赵一新. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿. 物理学报, 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [11] 张翱, 陈云琳, 闫君, 张春秀. 有机阳离子对卤素钙钛矿太阳能电池性能的影响. 物理学报, 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [12] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [13] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [14] 刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云. 钙钛矿APbI3结构稳定性及光电性质的理论研究. 物理学报, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [15] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性. 物理学报, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [18] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [19] 李智强, 陆夏莲, 陈敏, 何山, 李景德. 钙钛矿结构中的简谐子软模. 物理学报, 2002, 51(7): 1581-1585. doi: 10.7498/aps.51.1581
    [20] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长. 物理学报, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
计量
  • 文章访问数:  328
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 修回日期:  2022-04-13
  • 上网日期:  2022-08-18
  • 刊出日期:  2022-09-05

纳米成核点辅助结晶对钙钛矿光电探测器性能的影响

  • 1. 华南理工大学机械与汽车工程学院, 广州 510006
  • 2. 广州计量检测技术研究院, 广州 510663
  • 3. 泉州师范学院物理与信息工程学院, 福建省先进微纳光子技术与器件重点实验室, 泉州 362000
  • 通信作者: 苏子生, suzs@qztc.edu.cn
    基金项目: 福建省自然科学基金(批准号: 2020J01778)资助的课题.

摘要: 有机无机杂化钙钛矿材料因具有可调节的带隙宽度、优异的载流子传输性能、可低温溶液法制备等优点, 近年来在光电器件的应用研究上受到了广泛的关注. 对于平面光电导型探测器, 电荷在两电极之间需横穿钙钛矿层, 由于钙钛矿晶体的形成能较低, 在晶界和薄膜表面易产生缺陷, 光生载流子被缺陷阻挡而加剧激子的非辐射复合, 造成器件光电性能下降. 本文通过在钙钛矿界面层下方引入微量的氧化石墨烯纳米片作为钙钛矿晶体的有效成核点, 使得钙钛矿晶体可依附于氧化石墨烯形核, 降低钙钛矿晶体成核势垒的同时与钙钛矿形成铅-氧键, 最终获得晶体颗粒增大、晶界数量减少、薄膜致密的钙钛矿层. 由于氧化石墨烯在玻璃基底上的含量极低, 大片玻璃基底裸露并与钙钛矿直接接触, 因此钙钛矿层应视为制备在玻璃基底上. 在氧化石墨烯纳米片的影响下钙钛矿与玻璃基底的接触更为紧密, 有效降低界面间的激子非辐射复合概率, 提高了界面间电荷传输性能. 最终, 在氧化石墨烯纳米片最优制备参数的影响下, 钙钛矿光电探测器光电流相比空白对照器件提高了1个数量级, 在3 V偏压下的开关电流比为5.22 × 103, 并且最优的光电探测器的光响应速度明显提高, 上升时间为9.6 ms, 下降时间为6.6 ms.

English Abstract

    • 将光信号转换为电信号的光电探测器在传感器家族中占据着重要地位. 目前, 光电探测器的光电转换材料多为无机半导体, 如GaAs[1-3], GaN[4,5], Ge[6,7]和Si[8,9]等, 虽然涵盖了从紫外到红外波段的光波长, 但这些无机半导体通常制备方法复杂, 价格昂贵, 机械灵活性受限, 一定程度上限制了大规模的商业应用[10]. 溶液法制备半导体, 包括旋涂、喷墨打印、喷涂等被认为是降低半导体光电探测器制备成本的有效方法. 目前溶液法制备涵盖了多种常见的宽带隙金属氧化物半导体材料(如ZnO[11], SnO2[12])、窄带隙量子点(如PbS[13])和钙钛矿材料[14]. 其中, 钙钛矿材料具有带隙可调、高的光吸收系数、长的载流子扩散长度以及双极性载流子传输特性[15,16], 使得钙钛矿材料在可见光探测领域显示出巨大的潜力, 近年来受到广泛关注和研究.

      光电探测器按照结构可分为二端型(光电二极管型和光电导型)和三端型(光电晶体管型), 其中平面结构光电导型探测器具有制备简单, 可重复性高, 更易于钙钛矿纳米片、纳米线及纳米粒子的构建等优势[17], 但由于光生电荷在两电极间平面穿过钙钛矿层, 在长距离的电荷传输过程中, 载流子更容易被钙钛矿薄膜中的缺陷困住, 造成光电流损失, 因此钙钛矿层的质量是影响探测器整体性能的重要因素. 然而, 钙钛矿晶体的形成能较低, 采用溶液法制备的钙钛矿薄膜容易在晶体内部、晶界处以及薄膜表面产生缺陷[18].

      通过控制钙钛矿薄膜的材料结构、引入添加剂、优化制备方法等方式, 钙钛矿薄膜的质量可被有效提高. Zhu等[19]在甲基胺Sn-Pb钙钛矿体系中引入微量铷阳离子, 铷离子的掺杂提高了钙钛矿结晶的可控性和结晶取向性, 从而得到高质量的钙钛矿薄膜, 基于此制备的钙钛矿探测器具有高效率的紫外-近红外(300—1100 nm)光谱响应, 并表现出优异的工作稳定性. Meng课题组[20]利用富氧基底, 使之与钙钛矿形成Pb—O键, 采用增大钙钛矿晶体颗粒减少钙钛矿薄膜缺陷密度, 基于高质量钙钛矿晶体的光电探测器得到了0.73 A/W的响应度和9.63 × 1010 Jones (1 Jones = 1 cm·Hz–2·W–1)的探测率. Wang等[21]采用压力辅助的溶剂工程法对钙钛矿的结晶过程进行控制, 有效增大了钙钛矿晶体尺寸, 减少晶界, 并提高了钙钛矿薄膜在基底上的覆盖, 进而增大了光生载流子寿命, 最终制备的钙钛矿光电探测器显示出优越的光电性能. 可见, 对钙钛矿晶体的生长进行调控, 得到平整致密、晶界减少的钙钛矿薄膜, 是提高平面结构光电导型钙钛矿探测器性能的重要前提.

      石墨烯是由单层碳原子以sp2杂化方式键合构成的呈六边形网状结构的二维材料, 具有优异的光学、电学、热学等性能, 近年来在材料科学等领域受到了广泛关注和研究. 但石墨烯自身的不溶性以及片层间的范德瓦耳斯力和π-π堆积作用, 使得石墨烯在通常情况下在水和有机溶剂中会发生不可逆的团聚和沉淀[22,23]. 作为石墨烯衍生物, 氧化石墨烯具有与石墨烯基本一致的二维层状结构, 其表面与边缘引入了多种含氧官能团, 如羟基(—OH)、羰基(—C=OO)、羧基(—COOH)等, 含氧基团的存在使得氧化石墨烯在水中具有良好的分散性和稳定性, 因而氧化石墨烯更适于溶液加工[24].

      本文采用一种操作简便、成本低廉的方法提高钙钛矿的结晶性能及界面质量. 通过在玻璃基底上沉积微量的氧化石墨烯纳米片(GOSs)作为钙钛矿晶体的有效成核中心, 在GOSs的影响下, 一方面钙钛矿薄膜与玻璃基底结合更为紧密, 有效减少了界面间缺陷的产生; 另一方面, GOSs的存在有效降低了钙钛矿晶体的成核势垒并与钙钛矿形成铅-氧键, 最终得到了晶体颗粒增大、晶界数量减少、薄膜致密的钙钛矿层, 有效降低钙钛矿界面间的激子非辐射复合概率, 提高了载流子传输性能. 最终, 最优GOSs制备参数下的平面光电导型钙钛矿光电探测器在3 V偏压下的光电流相比空白对照器件提高1个数量级, 开关比达5.22 × 103, 并且响应速度相应提高, 上升、下降时间分别为9.6和6.6 ms.

    • GOSs粉末购自南京先丰纳米材料科技有限公司, PbI2和CH3NH3I购自西安宝莱特光电科技有限公司, N, N-二甲基甲酰胺(DMF, 无水级 99.8%)和二甲基亚砜(DMSO, 色谱纯)购买于阿拉丁试剂有限公司.

    • 本文所用的玻璃基底依次经过玻璃清洗剂、丙酮、去离子水、异丙醇超声30 min, 清洗完毕后取出吹干, 随后放置于臭氧-紫外灯下照射20 min以去除基底表面残留的有机物. 沉积GOSs的过程在空气中进行. 将GOSs粉末分散于去离子水中, 浓度分别为0.025, 0.05, 0.1 mg/mL, 超声处理5 min后得到GOSs分散液. 不同浓度的GOSs水分散液均用0.45 μm过滤头过滤以去除分散液中的杂质, 随后分别滴在经臭氧-紫外灯充分照射的玻璃基底上, 在旋涂参数为5000 r/min的条件下旋涂60 s, 将沉积有GOSs的玻璃基底放置于120 ℃热台上退火20 min后转移至氮气手套箱. 本文将上述不同浓度GOSs分散液沉积在玻璃基底上所得的样品分别命名为G0.025, G0.05和G0.1, 相应地, 空白玻璃基底命名为G0.

      MAPbI3采用一步反溶剂法制备. 将摩尔比为1∶1的PbI2和CH3NH3I粉末溶于体积比为7∶3的DMF和DMSO混合溶液中, 将上述钙钛矿前驱体溶液于70 ℃热台上加热搅拌过夜使之充分溶解. 以2000 r/min, 60 s的旋涂参数分别在G0.025, G0.05, G0.1以及G0上旋涂充分溶解的钙钛矿前驱体溶液, 在旋涂开始的第20 s向基底滴加500 μL氯苯反溶剂, 旋涂完毕后将基底放置于100 ℃热台退火10 min, 得到钙钛矿薄膜. 待钙钛矿薄膜冷却至室温后, 将钙钛矿薄膜放入真空镀膜机中蒸镀7.5 nm MoO3和60 nm Au电极, 本文报道的探测器沟道长度和宽度分别为1000和60 μm.

    • 采用原子力显微镜(AFM, Bruker Multi Mode 8)对沉积在硅片上的GOSs表面形貌进行表征, 采用扫描电子显微镜(SEM, Hitachi 4800)和X射线衍射仪(XRD, Rigaku D/Max-2500)对不同基底上的钙钛矿薄膜形貌及钙钛矿结晶性能进行表征, GOSs和钙钛矿薄膜在玻璃基底上的吸收光谱采用Shimadzu UV3101 PC 光谱仪测量. 在黑暗和光照(100 mW/cm2, AM 1.5 G太阳模拟器)条件下采用Keithley 2400测量钙钛矿探测器的电压-电流(I-V)特性. 外量子效率(EQE)采用本实验室自己搭建的系统测量, 包括锁相放大器(Stanford SR803)、斩波器(Stanford SR540, 斩波频率为130 Hz)、单色仪等, 详细测试过程参见补充材料. 本文中探测器的光响应行为是在白光条件下进行测量的, 入射光功率密度为23.50 mW·cm–2, 详细测试过程参见补充材料.

    • 首先, 对沉积在基底上的GOSs形貌进行探究. 由于本文采用的GOSs的浓度极低, 为了得到更清晰的GOSs形貌, 我们采用了表面更为平整的硅晶片作为基底探究GOSs的分布情况, 以5000 r/min, 60 s的旋涂参数分别旋涂了0.025, 0.050, 0.100 mg/mL的GOSs去离子水分散液, 并在AFM下观察GOSs的形貌, 如图1所示.

      图  1  (a) 空白硅片以及 (b) 0.025, (c) 0.050, (d) 0.100 mg/mL GOSs分散液沉积在硅片表面的形貌

      Figure 1.  The morphology of (a) bare silicon wafer and (b) 0.025, (c) 0.050, (d) 0.100 mg/ mL GOSs dispersion deposited on the surface of silicon wafer.

      GOSs的边缘包含了多种含氧官能团(羟基和环氧基), 使得GOSs具有中心疏水和边缘亲水的性质, 因此GOSs在去离子水中具有出色的分散稳定性和高的表面能[25,26]. 从图1可以看到, 硅基底上GOSs均匀分布, 密度随分散液浓度的增加而增加, GOSs高度均为2 nm左右, 这表明GOSs可视为单层氧化石墨烯片, 即二维碳-碳结构. GOSs之间的间距较大且片与片之间不相连, GOSs之间有大片基底裸露, 证明GOSs不能完全覆盖基底, 因此GOSs不能被视为界面层.

    • 在SEM下观察了G0, G0.025, G0.05以及G0.1上生长的钙钛矿薄膜形貌, 平面扫描和断面扫描的钙钛矿SEM照片分别如图2图3所示.

      图  2  (a) G0, (b) G0.025, (c) G0.05和(d) G0.1上生长的钙钛矿薄膜的平面扫描SEM照片

      Figure 2.  Top-view SEM images of the CH3NH3PbI3 films on (a) G0, (b) G0.025, (c) G0.05 and (d) G0.1

      图  3  (a) G0和(b) G0.05上生长的钙钛矿薄膜的断面扫描SEM照片

      Figure 3.  Cross-sectional SEM images of the CH3NH3PbI3 films on (a) G0 and (b) G0.05

      图2图3可以看到, 在不同基底上沉积的钙钛矿形貌表现出明显不同. 图2(a)为G0上生长的钙钛矿晶体形貌, 钙钛矿晶体的平均晶粒尺寸约为200 nm, 晶粒大小均匀. 但在薄膜表面, 尤其在晶界处可观察到明显缺陷. 与图2(a)相比, 在GOSs上生长的钙钛矿晶体尺寸增大. 其中, G0.025(图2(b))上生长的钙钛矿晶体颗粒大小不均匀, G0.1(图2(d))上钙钛矿薄膜出现缺陷. 相比之下, 基于G0.05(图2(c))修饰的钙钛矿晶体颗粒均匀且无针孔缺陷, 这意味着该参数下钙钛矿薄膜的质量最优.

      图3更加直观地反映出GOSs对钙钛矿晶体生长的影响. 可以看到, 图3(a)图3(b)两薄膜样品具有基本一致的厚度, 均约为500 nm, 说明GOSs的引入对钙钛矿薄膜的厚度没有影响, 这与单层GOSs和不连续分布的结论相符. 但如图3(a)所示, 在G0上的钙钛矿薄膜在垂直方向上是由几个晶体堆叠而成的, 且晶体与玻璃基底表面接触差, 存在大量孔洞缺陷, 这对电荷的传输是十分不利的; 而G0.05上生长的钙钛矿薄膜在垂直方向大部分仅由一个晶体组成, 少部分无GOSs的位置仍表现出多个晶体堆叠, 这表明钙钛矿晶体的晶粒尺寸增大, 且晶体与基底接触紧密无孔洞, 如图3(b)所示. 在补充材料(图S1)中给出了两组样品的大范围扫描照片, 可以看到以上所述GOSs的引入对钙钛矿薄膜的影响在整体上是均匀的. 钙钛矿晶体颗粒的增大意味着晶界数量的减少, 而晶界和缺陷处往往是电荷复合的中心, 晶界和缺陷数量的减少对降电荷复合的几率是非常有利的.

      本文采用XRD对生长在不同基底上的钙钛矿结晶进行了表征, 并对数据进行了归一化处理, 如图4(a)所示. 可以看到, 4组钙钛矿样品均在衍射角2θ为14.2°, 28.5°和32.0°的位置出现明显衍射峰, 分别对应钙钛矿的(110), (220)和(310)平面, 说明钙钛矿的晶体结构没有发生改变[27,28]. 在约12°的位置没有发现衍射峰, 说明钙钛矿反应完全, 薄膜中不存在未反应的PbI2. 通过比较各4组样品在14.2°和28.5°两个衍射峰的半峰宽(full width at half maximum, FWHM), 可以发现沉积在GOSs上的钙钛矿晶体衍射峰FWHM均低于在空白玻璃基底上生长的钙钛矿晶体, 并且在G0.05基底上钙钛矿衍射峰的FWHM达到最低: 在衍射角14.2°处为0.112°, 在28.5°处为0.099°, 而对比G0上钙钛矿样品的FWHM则分别为0.133°和0.146°, 如表1图4(b)所示. 衍射峰FWHM的降低意味着在G0.05上生长的钙钛矿结晶取向性更优, 相比G0上生长的钙钛矿晶体有明显提高.

      图  4  (a) 钙钛矿薄膜在G0, G0.025, G0.05以及G0.1上的XRD图谱; (b) 相应样品在14.2°和28.5°位置衍射峰放大图

      Figure 4.  (a) XRD patterns of the CH3NH3PbI3 films on G0, G0.025, G0.05 and G0.1; (b) enlarged diffraction peaks at 14.2° and 28.5° of the corresponding samples.

      FWHM/(°)
      14.228.5
      G0/CH3NH3PbI30.1330.146
      G0.025/CH3NH3PbI30.1130.104
      G0.05/CH3NH3PbI30.1120.099
      G0.1/CH3NH3PbI30.1210.115

      表 1  不同基底上生长的钙钛矿薄膜XRD衍射峰半峰宽

      Table 1.  FWHM of the CH3NH3PbI3 XRD diffraction peaks deposited on different substrates.

      对生长在GOSs及玻璃基底上的钙钛矿薄膜的紫外-可见光区域的吸收光谱进行了探究, 结果如图5所示. 为了说明GOSs本身对整体光吸收的影响, 给出了实验中所用最高浓度GOSs的吸收光谱并乘以系数30以突出曲线趋势. 可以看到, 4组钙钛矿薄膜具有相似的曲线, 吸收边缘约为780 nm, 与CH3NH3PbI3带隙为1.59 eV相符合. 生长在GOSs上的钙钛矿薄膜对整个光谱的吸收能力稍有增强, 其中以G0.05上生长的钙钛矿薄膜吸收最强. 由于GOSs的总量极低, 不足以影响钙钛矿薄膜的吸收(如图5所示), 因此光吸收的增强归因于钙钛矿薄膜质量的提高.

      图  5  沉积在G0, G0.025, G0.05以及G0.1上的CH3NH3PbI3光吸收谱. 图中同时给出G0.1放大30倍的吸收光谱

      Figure 5.  Absorbance spectra of the CH3NH3PbI3 films deposited on G0, G0.025, G0.05 and G0.1. The absorption spectrum of G0.1 amplified by 30 is also shown in the figure.

      基于以上的表征探究, GOSs的引入对钙钛矿结晶性能的积极影响可以归因于两方面因素: 一方面, 相比于平滑基底上的均相成核, 原子依附于杂质颗粒或原有晶体表面上形成核的非均相成核方式具有更低的成核势垒. GOSs的引入相当于在平滑的玻璃基底上沉积了微量杂质, 这些“杂质”带来的不均匀性有效降低了钙钛矿晶体成核势垒, 作为钙钛矿晶体非均相成核的成核中心促使了钙钛矿晶体的生长, 因此在GOSs沉积的位置出现钙钛矿晶体的优先生长, 且晶体与基底间的接触更紧密; 另一方面, 有文献报道氧化石墨烯可与钙钛矿相互作用形成Pb—O键[29], 而富氧基底与钙钛矿之间化学键的形成是提高钙钛矿晶体质量的重要影响因素之一[20], 因此我们将微量GOSs的引入促进钙钛矿晶体生长的另一个原因归结为GOSs与钙钛矿之间Pb—O键的形成.

    • 将结晶性能提高的钙钛矿薄膜应用于光电探测器中, 制备了平面光电导型钙钛矿光电探测器, 器件结构示意图和实物图分别如图6(a)图6(b)所示. 有研究表明, 电子可以从有机半导体的HOMO能级跃迁到MoO3的导带中, 因此通过在电极和有机半导体之间引入MoO3层可以有效降低电极/有机半导体界面的电荷注入势垒[30,31]. 在本课题组之前的报道中, 在钙钛矿与Au电极之间引入一定厚度的MoO3薄膜可有效提高CH3NH3PbI3/Au界面的载流子传输性能, 有利于提高钙钛矿光电探测器的光电流、加快CH3NH3PbI3/Au界面处缺陷态的电子填充和释放[32]. 因此本文在沉积Au电极前蒸镀了7.5 nm MoO3界面层.

      图  6  钙钛矿光电探测器的(a)结构示意图和(b)器件实物照片

      Figure 6.  (a) Schematic structure and (b) picture of the perovskite photodetector.

      首先测试G0, G0.025, G0.05以及G0.1上生长的钙钛矿所制备的光电探测器分别在光照(模拟太阳光AM 1.5 G, 图7(a))和黑暗(图7(b))条件下的I-V特性曲线. 如图7(a)所示, 所有器件的光电流均与所加偏压成线性关系, 说明器件各界面层间接触良好. 在GOSs上制备的钙钛矿探测器光电流均高于G0上制备的对比器件, 并且在G0.05和G0.1上制备的两组探测器相比对照器件光电流增长了一个数量级, 在G0.05上达到最高(1.15 × 10–6 A), 而对比器件G0的光电流为3.58 × 10–7 A. 光电流的提高可归因于钙钛矿薄膜质量的提高, 晶界数量的减少和缺陷的消除有效降低了载流子复合概率, 这与前文SEM下观察到的结论相符合. 钙钛矿探测器的暗电流主要来自于界面缺陷. 而在暗电流的测试结果中(图7(b)), 基于G0.05的探测器暗电流(2.21 × 10–10 A)低于G0上制备的探测器(6.77 × 10–10 A), 同样证实了器件钙钛矿界面质量的提高. 得益于提高的光电流和降低的暗电流, 在3 V偏压下基于G0.05制备的钙钛矿光电探测器得到了5.22 × 103的开关比, 这一数据相比对比器件(5.34 × 102)高一个数量级. 补充材料中给出了分别基于G0和G0.05的20个钙钛矿光电探测器的开关比分布图(图S2), 可以看到基于G0.05的器件普遍具有高于对比器件一个数量级的开关比, 体现出最优参数GOSs的引入对于提高钙钛矿光探测器的性能实验上具有较好的重复性.

      图  7  (a)光照及(b)黑暗条件下G0, G0.025, G0.05和G0.1上制备的钙钛矿探测器的I-V曲线

      Figure 7.  I-V curves of the photodetectors fabricated on G0, G0.025, G0.05 and G0.1 under (a) solar simulator irradiation and (b) dark, respectively.

      光响应度(R)和探测率(D*)均为表征光电探测器的重要性能参数, 它们与外量子效率(EQE)的关系可表示为[33]

      $ R = \frac{{{\text{EQE}} \times \lambda \times q}}{{h \times c}} \text{, } $

      $ {D^*} = \frac{R}{{{{(2q{J_{\text{d}}})}^{1/2}}}} \text{, } $

      其中, λ为入射光波长, q为电子电量绝对值, h为普朗克常数, c为光速, Jd为探测器在黑暗条件下测得的暗电流. 由此, 在最优参数G0.05以及对比器件G0上制备的钙钛矿探测器在3 V偏压下的RD*图8所示. 可以看到, 在不同基底上制备的器件均在350—800 nm处表现出良好的响应. 在G0.05上制备的探测器在整个可见光范围内的探测率均在1013 Jones以上, 高于G0上制备的对比器件. 由于光谱响应与探测器电流信号及入射光功率密切相关[34], 因此计算得到在波长为760 nm处投射在探测器上的光功率密度为3.65 × 10–2 mW·cm–2, 此时基于G0.05的钙钛矿探测器具有2.04 × 1014 Jones的探测率和1.71 A·W–1的响应度, 远高于对比器件(探测率为7.51 × 1013 Jones, 响应度为0.98 A·W–1), 这一结论进一步证实钙钛矿晶体质量的提高对探测器的电荷传输能力产生积极影响.

      图  8  分别沉积在G0和G0.05上的钙钛矿光电探测器的RD*

      Figure 8.  The R and D* of perovskite photodetectors fabricated on G0 and G0.05, respectively.

      在探测器的探测性能表征中, 光响应速度是其中重要的性能参数之一. 本文在功率密度为23.50 mW·cm–2的白光入射条件下测量了的1 V偏压下钙钛矿光电探测器的开关过程, 相应的光响应行为如图9所示. 在G0上制备的光电探测器上升和下降时间分别为16.6和9.4 ms, 而基于G0.05制备的器件则分别为9.6和6.6 ms.钙钛矿薄膜的缺陷是影响探测器电荷传输和收集的重要因素, 因此响应速度的提高归因于钙钛矿薄膜质量的提高. 本文将所报道的性能最优钙钛矿探测器与其他文献报道的采用溶液法制备的可见光探测器(包括其他钙钛矿材料或结构、其他光电转换材料)进行了性能对比, 如表2所列.

      图  9  G0和G0.05上制备的钙钛矿光电探测器的5个周期光响应行为

      Figure 9.  Five cycles photoresponse behavious of the perovskite photodetectors fabricated on G0 and G0.05.

      材料制备方法开关比/103响应度/(A·W–1)探测率/Jones响应时间Ref.
      Cs0.1FA0.2MA0.7Pb(I0.9Cl0.1)3-F4TCNQ旋涂6.945.4530 ms/600 ms[35]
      (BA)2(MA)n1PbnI3n+1旋涂1.3827.063.53 ms/3.78 ms[36]
      CH3NH3PbI3旋涂0.478.2 × 101218 ns[37]
      CH3NH3PbI3旋涂5.221.712.04 × 10149.6 ms/6.6 msThis work
      ZnO/pentacene旋涂0.362.17 × 1014[38]
      p-NiO/n-CdS水热法/旋涂~0.0052.60 × 10–29.21 × 1093.5 s[39]
      CdSe旋涂4.70.164 × 1011107 ms/110 ms[40]
      PTQ10∶O-IDTBR刮刀涂布0.033.3 × 101120 μs/25 μs[41]
      PTQ10∶O-FBR0.349.6 × 101212 μs/15 μs

      表 2  溶液法制备的可见光探测器性能

      Table 2.  Performance of visible light detector prepared by solution method.

    • 通过在钙钛矿下方的平滑玻璃基底上引入极微量的GOSs, 得到了晶体颗粒增大、晶界数量减少、与基底结合紧密、薄膜致密的钙钛矿层. GOSs的引入主要有两方面影响: 一方面为晶体生长提供成核点, 降低晶体成核势垒; 另一方面, GOSs中的O与钙钛矿中的Pb形成Pb—O键. 最终在GOSs的影响下, 钙钛矿光电探测器界面间的载流子传输性能有效提高, 在0.05 mg/ml GOSs分散液沉积的玻璃基底上制备的钙钛矿光电探测器光电流相比对照器件提高1个数量级, 在3 V偏压下的开关电流比达5.22 × 103, 且光响应速度相应提高, 上升时间和下降时间分别达到9.6和6.6 ms.

参考文献 (41)
补充材料:

目录

    /

    返回文章
    返回