-
巴黎-爱丁堡压机(Paris-Edinbrugh press)因具有大体积样品、便携、结构简单等优点, 被广泛应用于中子源进行高压原位中子衍射实验. 但因单轴加压而导致封垫和组装不断沿径向向外流动的特点, 给高压下组装的加热效率、保温效果、上下压砧的绝缘及热电偶连接等方面带来困难, 从而使得巴黎-爱丁堡压机在高压下的温度加载非常具有挑战性. 本文通过对高温高压组装的结构进行优化设计, 提高了组装的加热效率和保温效果. 通过对热电偶引线方式的优化, 实现了高压下温度的直接测量. 设计的HPT-3组装和HPT-3.5 组装在高压下的温度加载最高可分别达到2000 K和1500 K, 并且二者较大的样品尺寸满足中子衍射实验的需求. 原位高温高压中子衍射实验结果说明, HPT-3组装在压力8.5 GPa、温度1508 K的条件下可以获得高质量的样品的中子衍射谱, 同时该结果也进一步验证了所设计组装的良好稳定性.Paris-Edinbrugh (PE) press has been widely used in high pressure in-situ neutron diffraction experiments due to its advantages of large sample size, portability and simple structure. However, with the characteristics of uniaxial load of PE press, the weak lateral support makes the gasket and cell assembly continue flowing outward. So, the development of cell assembly of PE press that can simultaneously work under high pressure and high temperature (high P-T) is a great challenge. In this work, we design three-segment high P-T assembly of PE press for neutron diffraction, which can significantly improve the heating efficiency, thermal insulation, and stability of assembly. By using the fanned Cu foil leads of thermocouple, we realize the in-situ measurement of assembly temperature under a high pressure up to 5 GPa. The designed HPT-3 and HPT-3.5 assemblies can arrive at 2034 K and 1515 K respectively, which are measured by thermocouple. The high P-T experiments of HPT-3 assembly are carried out on a high-pressure neutron diffraction spectrometer (Fenghuang) of China Mianyang Research Reactor (CMRR). The results show that the designed assembly can simultaneously achieve high P-T of 8.5 GPa and 1508 K with collecting the high-quality neutron diffraction data of MgO cylindrical sample.
-
Keywords:
- Paris-Edinbrugh press /
- high pressure and high temperature /
- in-situ measurement temperature /
- neutron diffraction
[1] Bundy F P 1963 J. Chem. Phys. 38 631Google Scholar
[2] Corrign F R, Bundy F P 1975 J. Chem. Phys. 63 3812Google Scholar
[3] Snider E, Dasenbrock-Gammon N, McBride1 R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar
[4] Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404Google Scholar
[5] Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180 907Google Scholar
[6] Utsumi W, Kagi H, Komatsu K, Arima H, Nagai T, Okuchi T, Kamiyama T, Uwatoko Y, Matsubayashi K, Yagi T 2009 Nucl. Instrum. Methods A 600 50Google Scholar
[7] Zhao Y S, Zhang J Z, Xu H W, Lokshin K A, He D W, Qian J, Pantea C, Daemen L L, Vogel S C, Ding Y, Xu J 2010 Appl. Phys. A 99 585Google Scholar
[8] Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar
[9] Calder S, An K, Boehler R, Dela Cruz C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Santos A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar
[10] 史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 物理学报 68 116101Google Scholar
Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar
[11] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshalla W G, Wilson R M 1995 Appl. Phys. 66 1735Google Scholar
[12] Guthrie M, Boehler R, Tulk C A, Molaison J J, Santos A M, Li K, Hemley R J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 10552Google Scholar
[13] Boehler R, Guthrie M, Molaison J J, Santos A M, Sinogeikin S, Machida S, Pradhan N, Tulkn C A 2013 High Pressure Res. 33 546Google Scholar
[14] Hattori T, Sano-Furukawa A, Machida S, Abe J, Funakoshi K, Arima H, Okazaki N 2019 High Pressure Res. 39 417Google Scholar
[15] Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar
[16] Zhao Y, Robert B, Dreele V, Jiaming, Morgan G 1999 High Pressure Res. 16 161Google Scholar
[17] Zhang J, Zhao Y, Wang Y, Daemen L 2008 J. Appl. Phys. 103 093513Google Scholar
[18] He D, Zhao Y, Daemen L L, Qian J, Lokshin K, Shen T D, Zhang J, Lawson A C 2004 J. Appl. Phys. 95 4645Google Scholar
[19] Klotz S, Godec Y Le, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar
[20] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威 2020 物理学报 69 226101Google Scholar
Jiang M Q, Li X, Fang L M, Xie L, Chen X P, Hu Q W, Li Q, Li Q Z, Chen B, He D W 2020 Acta Phys. Sin. 69 226101Google Scholar
[21] 房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫 2020 高压物理学报 34 15705Google Scholar
Fang L M, Chen X P, Xie L, He D W, Hu Q W, Li X, Jiang M Q, Sun G A, Chen B, Peng S M, Li H, Han T X 2020 Chin. J. High Pressure Phys. 34 15705Google Scholar
[22] Godec Y L, Dove M T, Redfern S, Tucker M G, Marshall W G, Syfosse G, Besson J M 2001 High Pressure Res. 21 263Google Scholar
[23] Rodríguez-Carvajal J, Roisnel T 2004 Mater. Sci. Forum 443–444 123Google Scholar
[24] Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar
[25] Li B, Woody K, Kung J 2006 J. Geophys. Res. Solid Earth 111 11206Google Scholar
[26] Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar
-
图 1 中子衍射高温高压组装 (a)文献[16, 17]组装, 其中 1铝环, 2聚四氟乙烯环, 3 铝合金封垫, 4磷酸锆, 5电极, 6样品, 7不锈钢锥体, 8热电偶, 9石墨加热管, 10绝缘环; (b)文献[19]组装, 其中1铍铜合金封垫, 2绝缘环, 3 叶腊石, 4电极, 5氧化镁, 6样品, 7钽箔, 8石墨加热管; (c)文献[20, 21]组装, 其中1钛锆合金封垫, 2绝缘环, 3氧化锆, 4电极, 5铼箔, 6样品, 7石墨加热管
Fig. 1. Schematic illustrations of high-temperature and high-pressure cell assembly for neutron diffraction. (a) Cell assembly in Ref. [16, 17]. 1 Al ring, 2 teflon ring, 3 alloy steel gasket, 4 zirconium phosphate, 5 electrode, 6 sample, 7 stainless steel cone, 8 thermocouple, 9 carbon furnace, 10 insulating ring. (b) Cell assembly in Ref. [19]. 1 CuBe gasket, 2 insulating ring, 3 pyrophyllite, 4 electrode, 5 MgO, 6 sample, 7 Ta foil, 8 carbon furnace; (c) Cell assembly in Ref. [20, 21]. 1 TiZr gasket, 2 insulating ring, 3 ZrO2, 4 electrode, 5 Re foil, 6 sample, 7 carbon furnace.
图 2 (a) 高温高压组装示意图; (b) 高温高压组装各组装件实物图. 1 封垫, 2 叶腊石绝缘层, 3氧化锆, 4石墨加热管, 5绝缘管, 6样品, 7电极, 8热电偶
Fig. 2. (a) Schematic diagram of high-temperature and high-pressure cell assembly; (b) photograph of the assembly parts. 1 gasket, 2 pyrophyllite insulating ring, 3 ZrO2, 4 carbon furnace, 5 electrical insulation sleeve, 6 sample, 7 electrode, 8 thermocouple.
-
[1] Bundy F P 1963 J. Chem. Phys. 38 631Google Scholar
[2] Corrign F R, Bundy F P 1975 J. Chem. Phys. 63 3812Google Scholar
[3] Snider E, Dasenbrock-Gammon N, McBride1 R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar
[4] Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404Google Scholar
[5] Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180 907Google Scholar
[6] Utsumi W, Kagi H, Komatsu K, Arima H, Nagai T, Okuchi T, Kamiyama T, Uwatoko Y, Matsubayashi K, Yagi T 2009 Nucl. Instrum. Methods A 600 50Google Scholar
[7] Zhao Y S, Zhang J Z, Xu H W, Lokshin K A, He D W, Qian J, Pantea C, Daemen L L, Vogel S C, Ding Y, Xu J 2010 Appl. Phys. A 99 585Google Scholar
[8] Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar
[9] Calder S, An K, Boehler R, Dela Cruz C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Santos A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar
[10] 史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 物理学报 68 116101Google Scholar
Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar
[11] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshalla W G, Wilson R M 1995 Appl. Phys. 66 1735Google Scholar
[12] Guthrie M, Boehler R, Tulk C A, Molaison J J, Santos A M, Li K, Hemley R J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 10552Google Scholar
[13] Boehler R, Guthrie M, Molaison J J, Santos A M, Sinogeikin S, Machida S, Pradhan N, Tulkn C A 2013 High Pressure Res. 33 546Google Scholar
[14] Hattori T, Sano-Furukawa A, Machida S, Abe J, Funakoshi K, Arima H, Okazaki N 2019 High Pressure Res. 39 417Google Scholar
[15] Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar
[16] Zhao Y, Robert B, Dreele V, Jiaming, Morgan G 1999 High Pressure Res. 16 161Google Scholar
[17] Zhang J, Zhao Y, Wang Y, Daemen L 2008 J. Appl. Phys. 103 093513Google Scholar
[18] He D, Zhao Y, Daemen L L, Qian J, Lokshin K, Shen T D, Zhang J, Lawson A C 2004 J. Appl. Phys. 95 4645Google Scholar
[19] Klotz S, Godec Y Le, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar
[20] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威 2020 物理学报 69 226101Google Scholar
Jiang M Q, Li X, Fang L M, Xie L, Chen X P, Hu Q W, Li Q, Li Q Z, Chen B, He D W 2020 Acta Phys. Sin. 69 226101Google Scholar
[21] 房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫 2020 高压物理学报 34 15705Google Scholar
Fang L M, Chen X P, Xie L, He D W, Hu Q W, Li X, Jiang M Q, Sun G A, Chen B, Peng S M, Li H, Han T X 2020 Chin. J. High Pressure Phys. 34 15705Google Scholar
[22] Godec Y L, Dove M T, Redfern S, Tucker M G, Marshall W G, Syfosse G, Besson J M 2001 High Pressure Res. 21 263Google Scholar
[23] Rodríguez-Carvajal J, Roisnel T 2004 Mater. Sci. Forum 443–444 123Google Scholar
[24] Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar
[25] Li B, Woody K, Kung J 2006 J. Geophys. Res. Solid Earth 111 11206Google Scholar
[26] Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar
计量
- 文章访问数: 4754
- PDF下载量: 84
- 被引次数: 0