搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋-轨道耦合系统的电子涡旋

周永香 薛迅

引用本文:
Citation:

自旋-轨道耦合系统的电子涡旋

周永香, 薛迅

Electron vortices in spin-orbit coupling system

Zhou Yong-Xiang, Xue Xun
PDF
HTML
导出引用
  • 在轨道角动量守恒的无自旋-轨道耦合系统中存在带轨道角动量量子数的电子涡旋波解, 研究了存在自旋-轨道耦合, 轨道角动量不守恒的系统, 发现携带总角动量量子数的电子旋量波函数也有涡旋波解, 表现为自旋波函数和涡旋波波函数的纠缠波函数. 以中心力场中的电子为例, 构建了自旋-轨道耦合导致的轨道角动量不守恒但总角动量守恒的情况下, 携带固定总角动量量子数的电子沿$z$轴传播的涡旋波旋量波函数结构. 对自旋-涡旋纠缠中相应的电子涡旋波进行了微扰求解, 并结合Foldy-Wouthuysen变换, 说明了在相对论情况下, 中心力场中携带固定总角动量量子数的电子沿$z$轴传播时也确实存在四分量旋量的涡旋解, 从而为有自旋-轨道耦合导致的轨道角动量不守恒但总角动量守恒的系统提供了存在涡旋结构的理论支持.
    There exists an electron vortex solution with orbital angular momentum quantum in a non-spin-orbit coupling system which has nonconservative orbital angular momentum. We discuss the system with spin-orbit coupling and nonconservative orbital angular momentum, and we can find that the electrons with the total angular momentum numbers also have vortex beam solutions. And the vortex beam is expressed as an entangled wave function of the spin wave function and the vortex wave function. Taking the electrons in the central force field for example, in this paper constructed is a spinor vortex structure which is caused by the propagation of electrons carrying a fixed quantum number of total angular momentum along the z-axis. The spinor vortex structure is under the condition that the orbital angular momentum caused by spin-orbit coupling is non-conserved but the total angular momentum is conserved. The corresponding electron vortex beams in spin-vortex entanglement are solved by perturbation method, and the Foldy-Wouthuysen transformation is utilized to show that the vortex solution of the four-component spinor does exist in the case of relativity, when the electron with a fixed total angular momentum quantum number propagates along the z-axis in the central force field. The spinor provides theoretical support for the existence of the vortex structure for the system where the orbital angular momentum is not conserved but the total angular momentum is conserved due to spin-orbit coupling.
      通信作者: 薛迅, xxue@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11775080, 11865016)和重庆市自然科学基金(批准号: CSTB2022NSCQ-MSX0351)资助的课题.
      Corresponding author: Xue Xun, xxue@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775080, 11865016) and the Natural Science Foundation of Chongqing, China (Grant No. CSTB2022NSCQ-MSX0351).
    [1]

    Uchida M, Tonomura A 2010 Nature 464 737Google Scholar

    [2]

    Verbeeck J, Tian H, Schattschneider P 2010 Nature 467 301Google Scholar

    [3]

    McMorran B J, Agrawal A, Anderson I M, et al. 2011 Science 331 192Google Scholar

    [4]

    Schattschneider P, Stoeger-Pollach M, Verbeeck J 2012 arXiv: 1205.2329

    [5]

    Guzzinati G, Schattschneider P, Bliokh K Y 2013 Phys. Rev. Lett. 110 093601Google Scholar

    [6]

    Saitoh K, Hasegawa Y, Hirakawa K 2013 Phys. Rev. Lett. 111 074801Google Scholar

    [7]

    Nye J F, Berry M V 1974 Proc. R. Soc. London, Ser. A 336 165Google Scholar

    [8]

    Bliokh K Y, Bliokh Y P, Savel’Ev S 2007 Phys. Rev. Lett. 99 190404Google Scholar

    [9]

    Bliokh K Y, Dennis M R, Nori F 2011 Phys. Rev. Lett. 107 174802Google Scholar

    [10]

    Schattschneider P, Verbeeck J 2011 Ultramicroscopy 111 1461Google Scholar

    [11]

    Bliokh K Y, Nori F 2012 Phys. Rev. Lett. 108 120403Google Scholar

    [12]

    Karlovets D V 2012 Phys. Rev. A 86 062102Google Scholar

    [13]

    Van Boxem R, Verbeeck J, Partoens B 2013 Europhys. Lett. 102 40010Google Scholar

    [14]

    Bliokh K Y, Schattschneider P, Verbeeck J 2012 Phys. Rev. X 2 041011

    [15]

    Barnett S M 2017 Phys. Rev. Lett. 118 114802Google Scholar

    [16]

    Zou L, Zhang P, Silenko A J 2020 J. Phys. G: Nucl. Part. Phys. 47 055003Google Scholar

    [17]

    Bjorken J D, Drell S D 1964 Relativistic Quantum Mechanics, Relativistic Quanum Fields (Mcgraw: Mcgraw-Hill College) pp47–54

    [18]

    Foldy L L, Wouthuysen S A 1950 Phys. Rev. 78 29Google Scholar

    [19]

    Silenko A J 2008 Phys. Rev. A 77 012116Google Scholar

    [20]

    Silenko A J 2008 Eur. Phys. J. Spec. Top. 162 53Google Scholar

    [21]

    Siegman A E 1986 Lasers (Oxford: Oxford University Press) pp276–279

    [22]

    Barnett S M 2014 New J. Phys. 16 093008Google Scholar

    [23]

    Allen L, Beijersbergen M W, Spreeuw R J C 1992 Phys. Rev. A 45 8185Google Scholar

    [24]

    Allen L, Barnett S M, Padgett M J 2016 Optical angular momentum (Boca Raton: CRC Press)

    [25]

    J D 杰克逊 (朱培豫 译) 1978 物理学 (北京: 人民教育出版社) 第129–131页

    Jackson J D (translated by Zhu P Y) 1978 Physics (Beijing: People's Education Press) pp129–131 (in Chinese)

  • 图 1  $l = 1$时, 常$\rho $曲面与$\phi $的等相面上相交出的螺旋线(其中$\rho = r/W(z)$为无量纲径向坐标参量, $X = {x}/{{W(0)}}, $$ Y = {y}/{{W(0)}}, Z = {z}/{{W\left( 0 \right)}}$, $x = \rho \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$, 波形每旋转一周转动波函数${{\rm{e}}^{{\rm{i}}l\varphi }}$相位变化$2\pi $) (a) $\rho = 1$曲面与$\phi $的等相面交线; (b) $\rho = 2$曲面与$\phi $的等相面交线

    Fig. 1.  Spiral line intersected by the equiphase $\phi = \rm constant$ surface and $\rho = \rm constant$ surface in case of $l = 1$, where $\rho = r/W(z)$ is the dimensionless radial coordinate parameter and $X = {x}/{{W(0)}}, Y = {y}/{{W(0)}}, Z = {z}/{{W\left( 0 \right)}}$, $x = $$ \rho \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$. The phase increase of the rotation wave function ${{\rm{e}}^{{\rm{i}}l\varphi }}$ is $2\pi $ for every periodic rotation of the helix in space. (a) The spiral line intersected by the equiphase $\phi = \rm constant$ surface and $\rho = 1$ surface; (b) the spiral line intersected by the equiphase $\phi = \rm constant$ surface and $\rho = 2$ surface.

    图 2  当携带轨道角动量的电子在中心场中沿$z$轴运动时旋量上分量解$\phi $的螺旋等相位面, 轨道量子数$l = 1$, 波形每旋转一周转动波函数${{\rm{e}}^{{\rm{i}}l\varphi }}$相位变化$2\text{π}$

    Fig. 2.  Helical equiphase surface of the spinor upper component solution $\phi $ when the electrons with orbital angular momentum propagate along z-axis and the orbital quantum number is $l = 1$. The phase increase of the rotation wave function ${{\rm{e}}^{{\rm{i}}l\varphi }}$ is $2\text{π}$ for every periodic rotation of the helix in space.

    图 3  $z$取值从$ - 6$$6$时, 旋量下分量等相面与$\rho = 1.2$面所交出的涡旋线, 其中$X={x}/{W(0)}, Y={y}/{W(0)},Z= $$ {z}/{W\left(0\right)}$, $x = \rho \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$, $\rho = r/W(z)$, 波形每旋转一周转动波函数${{\rm{e}}^{{\rm{i}}\left( {l + 1} \right)\varphi }}$相位变化$4\text{π}$

    Fig. 3.  Spiral line intersected by the spinor lower equiphase surface and the $\rho = 1.2$ surface in case of the value of Z ranges from $ - 6$ to $6$, where $X={x}/{W(0)}, Y={y}/{W(0)}, $$ Z={z}/{W\left(0\right)}$, $x = \rho \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$, $\rho = r/W(z)$. The phase increase of the rotation wave function ${{\rm{e}}^{{\rm{i}}\left( {l + 1} \right)\varphi }}$ is $4\text{π}$ for every periodic rotation of the helix in space.

    图 4  $z$取值从$ - 6$$6$时, 旋量下分量等相面与$\rho = 1.5$面所交出的涡旋线, 其中$X={x}/{W(0)}, Y={y}/{W(0)}, Z= $$ {z}/{W\left(0\right)}$, $x = \rho \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$, $\rho = r/W(z)$, 波形每旋转一周转动波函数${{\rm{e}}^{{\rm{i}}\left( {l + 1} \right)\varphi }}$相位变化$4\pi $

    Fig. 4.  Spiral line intersected by the spinor lower equiphase surface and the $\rho = 1.5$ surface in case of the value of Z ranges from $ - 6$ to $6$, where $X={x}/{W(0)}, Y={y}/{W(0)}, $$ Z={z}/{W\left(0\right)}$, $x = \rho \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$, $\rho = r/W(z)$. The phase increase of the rotation wave function ${{\rm{e}}^{{\rm{i}}\left( {l + 1} \right)\varphi }}$ is $4\pi $ for every periodic rotation of the helix in space.

    图 5  中心力场中携带轨道角动量的电子沿$z$轴传播时其旋量下分量$\eta $的涡旋解等相面, 所对应的轨道量子数$l + 1 = 2$, 其中$X={x}/{W(0)}, Y={y}/{W(0)}, Z={z}/{W\left(0\right)}$, $x = \rho \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$, $\rho = r/W(z)$, 波形每旋转一周转动波函数${{\rm{e}}^{{\rm{i}}\left( {l + 1} \right)\varphi }}$相位变化$4\pi $

    Fig. 5.  Helical equiphase surface of the spinor lower component solution $\eta $ when the electrons with orbital angular momentum propagate along z-axis in the central field and corresponding orbital quantum number is $l + 1 = 2$, in which $X={x}/{W(0)}, Y={y}/{W(0)}, Z={z}/{W\left(0\right)}$, $x = \rho\; \times $$ \sin ({\varphi }/{2})$, $y = \rho \cos ({\varphi }/{2})$, $\rho = r/W(z)$. The phase increase of the rotation wave function ${{\rm{e}}^{{\rm{i}}\left( {l + 1} \right)\varphi }}$ is $4\pi $ for every periodic rotation of the helix in space.

  • [1]

    Uchida M, Tonomura A 2010 Nature 464 737Google Scholar

    [2]

    Verbeeck J, Tian H, Schattschneider P 2010 Nature 467 301Google Scholar

    [3]

    McMorran B J, Agrawal A, Anderson I M, et al. 2011 Science 331 192Google Scholar

    [4]

    Schattschneider P, Stoeger-Pollach M, Verbeeck J 2012 arXiv: 1205.2329

    [5]

    Guzzinati G, Schattschneider P, Bliokh K Y 2013 Phys. Rev. Lett. 110 093601Google Scholar

    [6]

    Saitoh K, Hasegawa Y, Hirakawa K 2013 Phys. Rev. Lett. 111 074801Google Scholar

    [7]

    Nye J F, Berry M V 1974 Proc. R. Soc. London, Ser. A 336 165Google Scholar

    [8]

    Bliokh K Y, Bliokh Y P, Savel’Ev S 2007 Phys. Rev. Lett. 99 190404Google Scholar

    [9]

    Bliokh K Y, Dennis M R, Nori F 2011 Phys. Rev. Lett. 107 174802Google Scholar

    [10]

    Schattschneider P, Verbeeck J 2011 Ultramicroscopy 111 1461Google Scholar

    [11]

    Bliokh K Y, Nori F 2012 Phys. Rev. Lett. 108 120403Google Scholar

    [12]

    Karlovets D V 2012 Phys. Rev. A 86 062102Google Scholar

    [13]

    Van Boxem R, Verbeeck J, Partoens B 2013 Europhys. Lett. 102 40010Google Scholar

    [14]

    Bliokh K Y, Schattschneider P, Verbeeck J 2012 Phys. Rev. X 2 041011

    [15]

    Barnett S M 2017 Phys. Rev. Lett. 118 114802Google Scholar

    [16]

    Zou L, Zhang P, Silenko A J 2020 J. Phys. G: Nucl. Part. Phys. 47 055003Google Scholar

    [17]

    Bjorken J D, Drell S D 1964 Relativistic Quantum Mechanics, Relativistic Quanum Fields (Mcgraw: Mcgraw-Hill College) pp47–54

    [18]

    Foldy L L, Wouthuysen S A 1950 Phys. Rev. 78 29Google Scholar

    [19]

    Silenko A J 2008 Phys. Rev. A 77 012116Google Scholar

    [20]

    Silenko A J 2008 Eur. Phys. J. Spec. Top. 162 53Google Scholar

    [21]

    Siegman A E 1986 Lasers (Oxford: Oxford University Press) pp276–279

    [22]

    Barnett S M 2014 New J. Phys. 16 093008Google Scholar

    [23]

    Allen L, Beijersbergen M W, Spreeuw R J C 1992 Phys. Rev. A 45 8185Google Scholar

    [24]

    Allen L, Barnett S M, Padgett M J 2016 Optical angular momentum (Boca Raton: CRC Press)

    [25]

    J D 杰克逊 (朱培豫 译) 1978 物理学 (北京: 人民教育出版社) 第129–131页

    Jackson J D (translated by Zhu P Y) 1978 Physics (Beijing: People's Education Press) pp129–131 (in Chinese)

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化. 物理学报, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [3] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [4] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [5] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [6] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应. 物理学报, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [8] 孙海明. Bi2Te3(111)和Al2O3(0001)衬底对Bi(111)双原子层的电子结构及拓扑性质的影响. 物理学报, 2022, 71(13): 137101. doi: 10.7498/aps.71.20220060
    [9] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [10] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [11] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [12] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [13] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [14] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [15] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [16] 黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平. 自旋-轨道耦合下冷原子的双反射. 物理学报, 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [17] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [18] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [19] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究. 物理学报, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  4311
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-05-29
  • 上网日期:  2022-10-27
  • 刊出日期:  2022-11-05

/

返回文章
返回