-
双结叠层太阳能电池由两个具有不同带隙吸收体的电池组成, 通过差异化吸收更宽范围波长的太阳光, 降低光子热化损失, 已展现出打破单结太阳能电池Shockley-Queisser极限效率的巨大优势. 获益于钙钛矿电池带隙可调和制备成本低的优点以及晶硅电池产业化的优势, 钙钛矿/晶硅叠层太阳电池成为光伏领域的研究热点. 本文系统的梳理了钙钛矿/晶硅叠层太阳能电池的最新研究进展, 重点从钙钛矿顶电池、中间互联层和晶硅底电池的结构出发, 总结出高效叠层器件在光学和电学方面的设计原则. 本文还详细地分析了限制钙钛矿/晶硅叠层太阳能电池继续提效的关键因素及解决措施, 这对于钙钛矿/晶硅叠层太阳能电池的产业化之路是非常重要的. 最后, 对下一代更高效率的低成本叠层太阳能电池进行了展望. 我们认为随着对光伏器件效率要求越来越高, 基于钙钛矿/晶硅叠层结构的三结电池将会成为下一代低成本高效电池的研究热点.Double junction tandem solar cells consisting of two absorbers with designed different band gaps show great advantage in breaking the Shockley-Queisser limit efficiency of single junction solar cell by differential absorption of sunlight in a wider range of wavelengths and reducing the thermal loss of photons. Owing to the advantages of adjustable band gap and low cost of perovskite cells, perovskite/crystalline silicon tandem solar cells have become a research hotspot in photovoltaics. We systematically review the latest research progress of perovskite/crystalline silicon tandem solar cells. Focusing on the structure of perovskite top cells, intermediate interconnection layers and crystalline silicon bottom cells, we summarize the design principles of high-efficiency tandem devices in optical and electrical aspects. We find that the optical and electrical engineering of each layer structure in perovskite/crystalline silicon tandem solar cells goes through the whole process of device preparation. We also summarize the challenges of limiting the further improvement of the efficiency of the perovskite/crystalline silicon tandem solar cells and the corresponding improvement measures, which covers the following respects: 1) Improving the balance between Voc and Jsc of the broadband perovskite cell through additive engineering and interface engineering; 2) improving the bandgap matching between the electrical layers and reducing the carrier transport barrier through adjusting the work function or conductivity of layers; 3) improving the photocurrent coupling between sub-cells and the photocurrent of tandem solar cells by using light engineering and conformal deposition technology of perovskite cells. At present, there have been many technologies to improve the stability of perovskite solar cells, such as additive engineering and interface engineering, but the problem has hardly been solved. Therefore, improving the stability of broadband gap perovskite solar cells to the level of crystalline silicon solar cells will become an important challenge to limit its large-scale application. In terms of efficiency, the mass production efficiency of perovskite/crystalline silicon tandem solar cells is far lower than that of the laboratory level. One of the reasons is that it is difficult to achieve low-cost and deposition of uniform large area perovskite solar cells. Therefore improving the stability of broadband gap perovskite solar cells and developing low-cost large-area perovskite deposition technology will become extremely critical. Finally we look forward to the next generation of higher efficient low-cost tandem solar cells. We believe that with the increasing demand for higher efficiency photovoltaic devices, the triple junction solar cells based on the perovskite/crystalline silicon stack structure will become the future photovoltaics.
[1] Yu Z S J, Carpenter J V, Holman Z C 2018 Nat. Energy 3 747Google Scholar
[2] Song Z N, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D, Heben M J 2017 Energy Environ. Sci. 10 1297Google Scholar
[3] Gu W B, Ma T, Li M, Shen L, Zhang Y J 2020 Appl. Energy 258 114075Google Scholar
[4] Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 5 860
[5] Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar
[6] Wang S L, Wang P Y, Chen B B, Li R J, Ren N Y, Li Y C, Shi B, Huang Q, Zhao Y, Grätzel M, Zhang X D 2022 eScience 2 339Google Scholar
[7] Yadav C, Kumar S 2022 Opt. Mater. 123 111847Google Scholar
[8] Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F 2018 ACS Energy Lett. 3 305Google Scholar
[9] Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar
[10] NREL Best Research-Cell Efficiencies. https//www.nrel.gov/pv/cell-efficiency.html.
[11] Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D 2017 J. Am. Chem. Soc. 139 11117Google Scholar
[12] Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar
[13] Jacobsson T J, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M, Hagfeldt A 2016 Energy Environ. Sci. 9 1706Google Scholar
[14] Werner J J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar
[15] Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Gratzel M, Noufi R, Buonassisi T Salleo A McGehee M D 2015 Energy Environ. Sci. 8 956Google Scholar
[16] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Gratzel M, De Angelis F 2014 Nano Lett. 14 3608Google Scholar
[17] Todorov T, Gershon T, Gunawan O, Lee Y S, Sturdevant C, Chang L Y, Guha S 2015 Adv. Energy Mater. 5 1500799Google Scholar
[18] Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar
[19] N Unger E L Bowring A R Tassone C J Pool V L Gold- Parker A Cheacharoen R Stone K H Hoke E T Toney M F McGehee M D 2014 Chem. Mater. 26 7158Google Scholar
[20] Dong Q Yuan Y B Shao Y C Fang Y J Wang Q Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar
[21] Krückemeier L; Rau; U, Stolterfoht M, Kirchartz T 2020 Adv. Energy Mater. 10 1902573Google Scholar
[22] R T Ross 1967 J. Chem. Phys. 46 4590Google Scholar
[23] Jost M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar
[24] Hoke E T, Slotcavage D J, Dohner E R, Bowring A. R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar
[25] Rajagopal A, Yang Z B, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K 2017 Adv. Mater. 29 1702140Google Scholar
[26] Wu Y L, Yan D, Peng J, Duong T, Wan Y M, Phang S P, Shen H P, Wu N D, Barugkin C, Fu X, Surve S, Grant D, Walter D, White T P, Catchpole K R, Weber K J 2017 Energy Environ. Sci. 10 2472Google Scholar
[27] Zheng J H, Mehrvarz H, Ma F J, Lau C F, Green M A, Huang S J, Ho-Baillie A W 2018 Acs Energy Lett. 3 2299Google Scholar
[28] Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar
[29] Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar
[30] Xu J X, Boyd C C, Yu Z S, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, F. A. M. van Hest M, Berry J J, Luther J M, Holman Z C, McGehee1 M D 2020 Science 367 1097Google Scholar
[31] Y Yang C Liu Y Ding Z Arain S Wang X Liu T Hayat A Alsaedi, S Dai 2019 ACS Appl. Mater. Interfaces 11 34964Google Scholar
[32] D Liu H Zheng Y Wang L Ji H Chen W Yang L Chen Z Chen, S Li 2020 Chem. Eng. J. 396 125010Google Scholar
[33] Dong H, Xi J, Zuo L J, Li R J, Yang Y G, Wang D D, Yu Y, Ma L, Ran C X, Gao W Y, Jiao B, Xu J, Lei T, Wei F J, Yuan F, Zhang L, Shi Y F, Hou X, Wu Z X 2019 Adv. Funct. Mater. 29 1808119Google Scholar
[34] Canil L, Cramer T, Fraboni B, Ricciarelli D, Meggiolaro D, Singh A, Abate A 2021 Energy Environ. Sci. 14 1429Google Scholar
[35] Al-Ashouri A, Kohnen E, Li B, et al. 2020 Science 370 1300Google Scholar
[36] Kim C U, Yu J C, Jung E D, Choi I Y, Park W, Lee H, Kim I, Lee D K, Hong K K, Song M H, Choia K J 2019 Nano Energy 60 213Google Scholar
[37] Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135Google Scholar
[38] Kim D, Jung H J, Park I J, et al. 2020 Science 368 155Google Scholar
[39] Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 473Google Scholar
[40] Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar
[41] Wu Y, Zheng P, Peng J, Xu M, Chen Y, Surve S, Weber K 2022 Adv. Energy Mater. 12 2200821Google Scholar
[42] Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar
[43] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[44] Chen B, Zhengshan J Y, Manzoor S, Wang S, Weig W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar
[45] Tockhorn P, Sutter J, Cruz A, et al. 2022 Nat. Nanotechnol. 17 1214Google Scholar
[46] Li Y C, Shi B A, Xu Q J, Yan L L, Ren N Y, Chen Y L, Han W, Huang Q, Zhao Y, Zhang X D 2021 Adv. Energy Mater. 11 2102046Google Scholar
[47] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社) 第60页
Shen W Z, Li Z P 2014 Silicon-based Heterojunction Solar Cell Physics and Devices (Beijing: Science Press) p60 (in Chinese)
[48] Sahli F, Kamino B A, Werner J, Brauninger M, Paviet-Salomon B, Barraud L, Monnard R, Seif J P, Tomasi A, Jeangros Q 2018 Adv. Energy Mater. 8 1701609Google Scholar
[49] Zheng J H, Lau C F J, Mehrvarz H, et al. 2018 Energy Environ. Sci. 11 2432Google Scholar
-
图 6 (a) TSC结构示意图; Eg为1.68 eV的钙钛矿沉积在不同HTL上的(b)准费米能级裂分值和(c)认证的J-V曲线, 包括MPP效率和电性能参数[35]
Fig. 6. (a) Schematic stack of the perovskite/silicon TSC; (b) quasi-Fermi level splitting (QFLS) values of 1.68 eV bandgap perovskite films on different substrate; (c) certified J-V curve including the MPP value and the device parameters[35].
图 9 钙钛矿/晶硅TSC的(a)结构示意图和(b) J-V曲线[26]; (c)钙钛矿/HJTTSC结构示意图; (d) 材料的折射率(n)对比; 1.1 cm2的最优电池的(e) J-V曲线和(f) EQE曲线[40]
Fig. 9. (a) Schematic and (b) J-V curve of tandem cell[26]; (c) schematic of tandem cell; (d) the sequence of refractive indices in the cell stack; (e) J-V curve; (f) EQE curves of the champion tandem cell (1.1 cm2) [40].
图 10 (a)全绒面TSC结构示意图; (b)钙钛矿顶电池截面的二次电子SEM图[42]; (c)全绒面TSC结构和N2辅助刮涂示意图; (d) N2辅助刮涂PTAA的SEM图[44]; (e)正弦纳米结构互联界面SEM图; (f)正弦纳米结构互联TSC的QE曲线[45]
Fig. 10. (a) Schematic view of a fully textured TSC; (b) secondary electron SEM image of a cross section of the perovskite top cell [42]; (c) schematic view of a fully textured TSC and N2-assisted blade coating; (d) SEM images of PTAA by N2-assisted blade coating [44]; (e) SEM of sinusoidal nanostructured interconnection; (f) QE curve of TSC with sinusoidally nanostructured [45].
图 13 (a)无互联层的TSC结构示意图; (b)不同p++掺杂浓度拟合出的SnO2/p++界面的暗态J-V曲线, 插图为界面存在SiO2时的能带示意图; 16 cm2的最优TSC的(c)J-V曲线, 插图为稳态PCE曲线和(d)EQE曲线和吸收光谱[49]
Fig. 13. (a) Schematic device design of interface-layer-free TSC. (b) simulated dark J-V curves for the SnO2/p++ silicon interface with varied p++ doping concentration. Inset is corresponding band diagram with native SiO2. (c) J-V curve and the steady-state PCE in the inset and (d) EQE and the total absorbance for the champion tandem device on 16 cm2 [49]
表 1 高效率钙钛矿/晶硅叠层电池性能
Table 1. Performance of high efficiency perovskite/c-Si solar cells.
Device structure Si cell ICs Perovskite Bandgap ETL HTL Area/ PCE/ Jsc/ Voc/ FF/ Ref. /eV cm2 % (mA·cm–2) V % n-i-p n-BSF n++/p++ a-Si:H CH3NH3PbI3 1.61 TiO2 Spiro-OMeTAD 1 13.7 11.5 1.58 75 [9] n-i-p n- PERC ITO Cs0.07Rb0.03FA0.765MA0.135Pb-(I0.85Br0.15)3 1.62 TiO2 Spiro-OMeTAD 1 22.8 17.6 1.75 73.8 [26] n-i-p n-PERC — (FAPbI3)0.83(MAPbBr3)0.17 1.59 SnO2 Spiro-OMeTAD 16 21.9 16.2 1.74 78 [27] n-i-p n-HJT ITO FA 0.5MA0.38Cs0.12PbI2.04Br0.96 1.69 SnO2 Spiro-OMeTAD 0.06 22.2 16.5 1.655 81.1 [28] n-i-p n-HJT n+/p+nc-Si:H Cs0.19FA0.81Pb-(I0.78Br0.22)3 1.63 C60 Spiro-OMeTAD 0.25 22.7 16.8 1.751 77.1 [48] n-i-p n-PERC — CH3NH3PbI3 — SnO2 Spiro-OMeTAD 16 15.6 15.5 1.659 61 [49] p-i-n HJT n+/p+nc-Si:H CsxFA1–xPb(I Br)3 — C60/SnO2 Spiro-TTB 1.42 25.52 19.5 1.788 73.1 [42] p-i-n n-HJT ITO Cs0.15(FA0.83MA0.17)0.85Pb(I0.7Br0.3)3 1.64 C60/SnO2 PTAA 0.49 25.4 17.8 1.8 19.4 [29] p-i-n p-BSF ITO (FAMAPbI3)0.8(MAPbBr3)0.2 1.64 PCBM PTAA 0.27 21.02 16.13 1.645 79.23 [36] p-i-n HJT InOx Cs0.05MA0.15FA0.8PbI2.25Br0.75 1.68 C60/SnOx NiOx 0.832 26 19.8 1.7 77 [37] p-i-n n-HJT ITO Cs0.05(FA0.83MA0.17)0.95Pb(I1–xBrx)3 1.63 PC61BM F4-TCNQ doped polyTPD and NPD 1.088 25.3 19.02 1.793 74.3 [40] p-i-n HJT ITO Cs0.25FA0.75Pb(I0.85Br0.15)3+MAPbCl3 1.67 C60/SnO PolyTPD/NiOx 1 27.13 19.12 1.886 75.3 [30] p-i-n n-HJT ITO Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 1.68 C60 Me-4PACz(SAM) 1.064 29.15 19.26 1.9 79.52 [35] p-i-n n-HJT ITO Cs0.1MA0.9Pb(I0.9Br0.1)3 — C60/SnO2 PTAA 0.049 26 19.2 1.82 74.4 [44] p-i-n n-HJT n+/p+nc-Si:H FA0.9Cs0.1PbI2.87Br0.13 1.63 C60/SnO2 Spiro-TTB 0.5091 27.48 19.78 1.88 76.85 [46] p-i-n n-TOPCon ITO Cs0.22FA0.78Pb(Cl0.03 Br0.15I0.85)3 — C60/SnO2 NiOx 1 27.63 19.68 1.794 78.27 [41] -
[1] Yu Z S J, Carpenter J V, Holman Z C 2018 Nat. Energy 3 747Google Scholar
[2] Song Z N, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D, Heben M J 2017 Energy Environ. Sci. 10 1297Google Scholar
[3] Gu W B, Ma T, Li M, Shen L, Zhang Y J 2020 Appl. Energy 258 114075Google Scholar
[4] Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 5 860
[5] Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar
[6] Wang S L, Wang P Y, Chen B B, Li R J, Ren N Y, Li Y C, Shi B, Huang Q, Zhao Y, Grätzel M, Zhang X D 2022 eScience 2 339Google Scholar
[7] Yadav C, Kumar S 2022 Opt. Mater. 123 111847Google Scholar
[8] Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F 2018 ACS Energy Lett. 3 305Google Scholar
[9] Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar
[10] NREL Best Research-Cell Efficiencies. https//www.nrel.gov/pv/cell-efficiency.html.
[11] Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D 2017 J. Am. Chem. Soc. 139 11117Google Scholar
[12] Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar
[13] Jacobsson T J, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M, Hagfeldt A 2016 Energy Environ. Sci. 9 1706Google Scholar
[14] Werner J J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar
[15] Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Gratzel M, Noufi R, Buonassisi T Salleo A McGehee M D 2015 Energy Environ. Sci. 8 956Google Scholar
[16] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Gratzel M, De Angelis F 2014 Nano Lett. 14 3608Google Scholar
[17] Todorov T, Gershon T, Gunawan O, Lee Y S, Sturdevant C, Chang L Y, Guha S 2015 Adv. Energy Mater. 5 1500799Google Scholar
[18] Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar
[19] N Unger E L Bowring A R Tassone C J Pool V L Gold- Parker A Cheacharoen R Stone K H Hoke E T Toney M F McGehee M D 2014 Chem. Mater. 26 7158Google Scholar
[20] Dong Q Yuan Y B Shao Y C Fang Y J Wang Q Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar
[21] Krückemeier L; Rau; U, Stolterfoht M, Kirchartz T 2020 Adv. Energy Mater. 10 1902573Google Scholar
[22] R T Ross 1967 J. Chem. Phys. 46 4590Google Scholar
[23] Jost M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar
[24] Hoke E T, Slotcavage D J, Dohner E R, Bowring A. R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar
[25] Rajagopal A, Yang Z B, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K 2017 Adv. Mater. 29 1702140Google Scholar
[26] Wu Y L, Yan D, Peng J, Duong T, Wan Y M, Phang S P, Shen H P, Wu N D, Barugkin C, Fu X, Surve S, Grant D, Walter D, White T P, Catchpole K R, Weber K J 2017 Energy Environ. Sci. 10 2472Google Scholar
[27] Zheng J H, Mehrvarz H, Ma F J, Lau C F, Green M A, Huang S J, Ho-Baillie A W 2018 Acs Energy Lett. 3 2299Google Scholar
[28] Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar
[29] Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar
[30] Xu J X, Boyd C C, Yu Z S, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, F. A. M. van Hest M, Berry J J, Luther J M, Holman Z C, McGehee1 M D 2020 Science 367 1097Google Scholar
[31] Y Yang C Liu Y Ding Z Arain S Wang X Liu T Hayat A Alsaedi, S Dai 2019 ACS Appl. Mater. Interfaces 11 34964Google Scholar
[32] D Liu H Zheng Y Wang L Ji H Chen W Yang L Chen Z Chen, S Li 2020 Chem. Eng. J. 396 125010Google Scholar
[33] Dong H, Xi J, Zuo L J, Li R J, Yang Y G, Wang D D, Yu Y, Ma L, Ran C X, Gao W Y, Jiao B, Xu J, Lei T, Wei F J, Yuan F, Zhang L, Shi Y F, Hou X, Wu Z X 2019 Adv. Funct. Mater. 29 1808119Google Scholar
[34] Canil L, Cramer T, Fraboni B, Ricciarelli D, Meggiolaro D, Singh A, Abate A 2021 Energy Environ. Sci. 14 1429Google Scholar
[35] Al-Ashouri A, Kohnen E, Li B, et al. 2020 Science 370 1300Google Scholar
[36] Kim C U, Yu J C, Jung E D, Choi I Y, Park W, Lee H, Kim I, Lee D K, Hong K K, Song M H, Choia K J 2019 Nano Energy 60 213Google Scholar
[37] Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135Google Scholar
[38] Kim D, Jung H J, Park I J, et al. 2020 Science 368 155Google Scholar
[39] Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 473Google Scholar
[40] Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar
[41] Wu Y, Zheng P, Peng J, Xu M, Chen Y, Surve S, Weber K 2022 Adv. Energy Mater. 12 2200821Google Scholar
[42] Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar
[43] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[44] Chen B, Zhengshan J Y, Manzoor S, Wang S, Weig W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar
[45] Tockhorn P, Sutter J, Cruz A, et al. 2022 Nat. Nanotechnol. 17 1214Google Scholar
[46] Li Y C, Shi B A, Xu Q J, Yan L L, Ren N Y, Chen Y L, Han W, Huang Q, Zhao Y, Zhang X D 2021 Adv. Energy Mater. 11 2102046Google Scholar
[47] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社) 第60页
Shen W Z, Li Z P 2014 Silicon-based Heterojunction Solar Cell Physics and Devices (Beijing: Science Press) p60 (in Chinese)
[48] Sahli F, Kamino B A, Werner J, Brauninger M, Paviet-Salomon B, Barraud L, Monnard R, Seif J P, Tomasi A, Jeangros Q 2018 Adv. Energy Mater. 8 1701609Google Scholar
[49] Zheng J H, Lau C F J, Mehrvarz H, et al. 2018 Energy Environ. Sci. 11 2432Google Scholar
计量
- 文章访问数: 17426
- PDF下载量: 867
- 被引次数: 0