搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展

张美荣 祝曾伟 杨晓琴 于同旭 郁骁琦 卢荻 李顺峰 周大勇 杨辉

引用本文:
Citation:

迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展

张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉

Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%

Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui
PDF
HTML
导出引用
  • 双结叠层太阳能电池由两个具有不同带隙吸收体的电池组成, 通过差异化吸收更宽范围波长的太阳光, 降低光子热化损失, 已展现出打破单结太阳能电池Shockley-Queisser极限效率的巨大优势. 获益于钙钛矿电池带隙可调和制备成本低的优点以及晶硅电池产业化的优势, 钙钛矿/晶硅叠层太阳电池成为光伏领域的研究热点. 本文系统的梳理了钙钛矿/晶硅叠层太阳能电池的最新研究进展, 重点从钙钛矿顶电池、中间互联层和晶硅底电池的结构出发, 总结出高效叠层器件在光学和电学方面的设计原则. 本文还详细地分析了限制钙钛矿/晶硅叠层太阳能电池继续提效的关键因素及解决措施, 这对于钙钛矿/晶硅叠层太阳能电池的产业化之路是非常重要的. 最后, 对下一代更高效率的低成本叠层太阳能电池进行了展望. 我们认为随着对光伏器件效率要求越来越高, 基于钙钛矿/晶硅叠层结构的三结电池将会成为下一代低成本高效电池的研究热点.
    Double junction tandem solar cells consisting of two absorbers with designed different band gaps show great advantage in breaking the Shockley-Queisser limit efficiency of single junction solar cell by differential absorption of sunlight in a wider range of wavelengths and reducing the thermal loss of photons. Owing to the advantages of adjustable band gap and low cost of perovskite cells, perovskite/crystalline silicon tandem solar cells have become a research hotspot in photovoltaics. We systematically review the latest research progress of perovskite/crystalline silicon tandem solar cells. Focusing on the structure of perovskite top cells, intermediate interconnection layers and crystalline silicon bottom cells, we summarize the design principles of high-efficiency tandem devices in optical and electrical aspects. We find that the optical and electrical engineering of each layer structure in perovskite/crystalline silicon tandem solar cells goes through the whole process of device preparation. We also summarize the challenges of limiting the further improvement of the efficiency of the perovskite/crystalline silicon tandem solar cells and the corresponding improvement measures, which covers the following respects: 1) Improving the balance between Voc and Jsc of the broadband perovskite cell through additive engineering and interface engineering; 2) improving the bandgap matching between the electrical layers and reducing the carrier transport barrier through adjusting the work function or conductivity of layers; 3) improving the photocurrent coupling between sub-cells and the photocurrent of tandem solar cells by using light engineering and conformal deposition technology of perovskite cells. At present, there have been many technologies to improve the stability of perovskite solar cells, such as additive engineering and interface engineering, but the problem has hardly been solved. Therefore, improving the stability of broadband gap perovskite solar cells to the level of crystalline silicon solar cells will become an important challenge to limit its large-scale application. In terms of efficiency, the mass production efficiency of perovskite/crystalline silicon tandem solar cells is far lower than that of the laboratory level. One of the reasons is that it is difficult to achieve low-cost and deposition of uniform large area perovskite solar cells. Therefore improving the stability of broadband gap perovskite solar cells and developing low-cost large-area perovskite deposition technology will become extremely critical. Finally we look forward to the next generation of higher efficient low-cost tandem solar cells. We believe that with the increasing demand for higher efficiency photovoltaic devices, the triple junction solar cells based on the perovskite/crystalline silicon stack structure will become the future photovoltaics.
      通信作者: 张美荣, zhangmeirong2022@gusulab.ac.cn ; 周大勇, zhoudayong2021@gusulab.ac.cn
    • 基金项目: 江苏省碳达峰碳中和科技创新专项资金(产业前瞻与关键核心技术攻关项目)(批准号: BE2022021)和苏州市碳达峰碳中和科技支撑项目(批准号: ST202219)资助的课题.
      Corresponding author: Zhang Mei-Rong, zhangmeirong2022@gusulab.ac.cn ; Zhou Da-Yong, zhoudayong2021@gusulab.ac.cn
    • Funds: Project supported by the Special Fund for the “Dual Carbon” Science and Technology Innovation of Jiangsu Province, China (Industrial Prospect and Key Technology Research program) (Grant No. BE2022021) and the “Dual Carbon” Science and Technology Innovation of Suzhou, China (Grant No. ST202219).
    [1]

    Yu Z S J, Carpenter J V, Holman Z C 2018 Nat. Energy 3 747Google Scholar

    [2]

    Song Z N, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D, Heben M J 2017 Energy Environ. Sci. 10 1297Google Scholar

    [3]

    Gu W B, Ma T, Li M, Shen L, Zhang Y J 2020 Appl. Energy 258 114075Google Scholar

    [4]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 5 860

    [5]

    Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar

    [6]

    Wang S L, Wang P Y, Chen B B, Li R J, Ren N Y, Li Y C, Shi B, Huang Q, Zhao Y, Grätzel M, Zhang X D 2022 eScience 2 339Google Scholar

    [7]

    Yadav C, Kumar S 2022 Opt. Mater. 123 111847Google Scholar

    [8]

    Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F 2018 ACS Energy Lett. 3 305Google Scholar

    [9]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [10]

    NREL Best Research-Cell Efficiencies. https//www.nrel.gov/pv/cell-efficiency.html.

    [11]

    Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D 2017 J. Am. Chem. Soc. 139 11117Google Scholar

    [12]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [13]

    Jacobsson T J, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M, Hagfeldt A 2016 Energy Environ. Sci. 9 1706Google Scholar

    [14]

    Werner J J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [15]

    Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Gratzel M, Noufi R, Buonassisi T Salleo A McGehee M D 2015 Energy Environ. Sci. 8 956Google Scholar

    [16]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Gratzel M, De Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [17]

    Todorov T, Gershon T, Gunawan O, Lee Y S, Sturdevant C, Chang L Y, Guha S 2015 Adv. Energy Mater. 5 1500799Google Scholar

    [18]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [19]

    N Unger E L Bowring A R Tassone C J Pool V L Gold- Parker A Cheacharoen R Stone K H Hoke E T Toney M F McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [20]

    Dong Q Yuan Y B Shao Y C Fang Y J Wang Q Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [21]

    Krückemeier L; Rau; U, Stolterfoht M, Kirchartz T 2020 Adv. Energy Mater. 10 1902573Google Scholar

    [22]

    R T Ross 1967 J. Chem. Phys. 46 4590Google Scholar

    [23]

    Jost M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [24]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A. R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [25]

    Rajagopal A, Yang Z B, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K 2017 Adv. Mater. 29 1702140Google Scholar

    [26]

    Wu Y L, Yan D, Peng J, Duong T, Wan Y M, Phang S P, Shen H P, Wu N D, Barugkin C, Fu X, Surve S, Grant D, Walter D, White T P, Catchpole K R, Weber K J 2017 Energy Environ. Sci. 10 2472Google Scholar

    [27]

    Zheng J H, Mehrvarz H, Ma F J, Lau C F, Green M A, Huang S J, Ho-Baillie A W 2018 Acs Energy Lett. 3 2299Google Scholar

    [28]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [29]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [30]

    Xu J X, Boyd C C, Yu Z S, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, F. A. M. van Hest M, Berry J J, Luther J M, Holman Z C, McGehee1 M D 2020 Science 367 1097Google Scholar

    [31]

    Y Yang C Liu Y Ding Z Arain S Wang X Liu T Hayat A Alsaedi, S Dai 2019 ACS Appl. Mater. Interfaces 11 34964Google Scholar

    [32]

    D Liu H Zheng Y Wang L Ji H Chen W Yang L Chen Z Chen, S Li 2020 Chem. Eng. J. 396 125010Google Scholar

    [33]

    Dong H, Xi J, Zuo L J, Li R J, Yang Y G, Wang D D, Yu Y, Ma L, Ran C X, Gao W Y, Jiao B, Xu J, Lei T, Wei F J, Yuan F, Zhang L, Shi Y F, Hou X, Wu Z X 2019 Adv. Funct. Mater. 29 1808119Google Scholar

    [34]

    Canil L, Cramer T, Fraboni B, Ricciarelli D, Meggiolaro D, Singh A, Abate A 2021 Energy Environ. Sci. 14 1429Google Scholar

    [35]

    Al-Ashouri A, Kohnen E, Li B, et al. 2020 Science 370 1300Google Scholar

    [36]

    Kim C U, Yu J C, Jung E D, Choi I Y, Park W, Lee H, Kim I, Lee D K, Hong K K, Song M H, Choia K J 2019 Nano Energy 60 213Google Scholar

    [37]

    Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135Google Scholar

    [38]

    Kim D, Jung H J, Park I J, et al. 2020 Science 368 155Google Scholar

    [39]

    Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 473Google Scholar

    [40]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [41]

    Wu Y, Zheng P, Peng J, Xu M, Chen Y, Surve S, Weber K 2022 Adv. Energy Mater. 12 2200821Google Scholar

    [42]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [43]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [44]

    Chen B, Zhengshan J Y, Manzoor S, Wang S, Weig W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [45]

    Tockhorn P, Sutter J, Cruz A, et al. 2022 Nat. Nanotechnol. 17 1214Google Scholar

    [46]

    Li Y C, Shi B A, Xu Q J, Yan L L, Ren N Y, Chen Y L, Han W, Huang Q, Zhao Y, Zhang X D 2021 Adv. Energy Mater. 11 2102046Google Scholar

    [47]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社) 第60页

    Shen W Z, Li Z P 2014 Silicon-based Heterojunction Solar Cell Physics and Devices (Beijing: Science Press) p60 (in Chinese)

    [48]

    Sahli F, Kamino B A, Werner J, Brauninger M, Paviet-Salomon B, Barraud L, Monnard R, Seif J P, Tomasi A, Jeangros Q 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [49]

    Zheng J H, Lau C F J, Mehrvarz H, et al. 2018 Energy Environ. Sci. 11 2432Google Scholar

  • 图 1  (a) TSC对太阳光谱吸收情况; (b)单结和多结太阳能电池工作原则[5]; (c)双结TSC理论PCE

    Fig. 1.  (a) Absorption spectrum for TSC; (b) working principle for a single junction and multi-junction solar cells [5]; (c) theoretical PCEs for two junction TSC.

    图 2  (a) Voc和(b) JscABX3带隙变化分布[23]

    Fig. 2.  (a) Voc and (b) Jsc as function of band gap or onset of absorption [23].

    图 3  (a)最优TSC的J-V曲线和稳态PCE (插图), 有效面积为16 cm2; (b)最优TSC的EQE曲线; 基于(c)新型和(d)传统金属栅线模拟电池的Voc降低[27]

    Fig. 3.  (a) J-V curve and in the inset steady-state PCE of TSC on 16 cm2; (b) EQE for the corresponding device; simulated voltage drops across the cell with (c) new and (d) old metal grid design [27].

    图 4  (a)半透明PSCs结构示意图; (b) TSC的EQE曲线[28]

    Fig. 4.  (a) Cross sectional SEM image of the perovskite/Si two-terminal tandem device; (b) external quantum efficiency of tandem device [28].

    图 5  (a)有效面积为1 cm2的钙钛矿/硅TSC结构示意图和横截面SEM图; 最优电池的(b)光照/暗态J-V曲线和MPP点跟踪PCE(插图); (c)EQE曲线[30]

    Fig. 5.  (a) Schematic of tandem structure (not to scale) and cross-sectional SEM image; (b) light/dark J-V curves and MPP tracking (inset) and (c) EQE spectra of the champion tandem [30].

    图 6  (a) TSC结构示意图; Eg为1.68 eV的钙钛矿沉积在不同HTL上的(b)准费米能级裂分值和(c)认证的J-V曲线, 包括MPP效率和电性能参数[35]

    Fig. 6.  (a) Schematic stack of the perovskite/silicon TSC; (b) quasi-Fermi level splitting (QFLS) values of 1.68 eV bandgap perovskite films on different substrate; (c) certified J-V curve including the MPP value and the device parameters[35].

    图 7  (a) PSCs各组分能级排列; (b)含有不同HTL的PSCs的J-V曲线[36]

    Fig. 7.  (a) Relative energy levels of the various device components in the perovskite solar cells; (b) J-V curves of the perovskite solar cells with various hole transport layers [36].

    图 8  (a) n-i-p结构和(b)p-i-n结构TSCs 结构示意图; (c)和(d)相应的吸收反射光谱[39]

    Fig. 8.  Perovskite/SHJ TSC structures with (a) n-i-p and (b) p-i-n; absorption and reflection spectra of optimized TSCs for the (c) regular architecture and (d) inverted architecture [39].

    图 9  钙钛矿/晶硅TSC的(a)结构示意图和(b) J-V曲线[26]; (c)钙钛矿/HJTTSC结构示意图; (d) 材料的折射率(n)对比; 1.1 cm2的最优电池的(e) J-V曲线和(f) EQE曲线[40]

    Fig. 9.  (a) Schematic and (b) J-V curve of tandem cell[26]; (c) schematic of tandem cell; (d) the sequence of refractive indices in the cell stack; (e) J-V curve; (f) EQE curves of the champion tandem cell (1.1 cm2) [40].

    图 10  (a)全绒面TSC结构示意图; (b)钙钛矿顶电池截面的二次电子SEM图[42]; (c)全绒面TSC结构和N2辅助刮涂示意图; (d) N2辅助刮涂PTAA的SEM图[44]; (e)正弦纳米结构互联界面SEM图; (f)正弦纳米结构互联TSC的QE曲线[45]

    Fig. 10.  (a) Schematic view of a fully textured TSC; (b) secondary electron SEM image of a cross section of the perovskite top cell [42]; (c) schematic view of a fully textured TSC and N2-assisted blade coating; (d) SEM images of PTAA by N2-assisted blade coating [44]; (e) SEM of sinusoidal nanostructured interconnection; (f) QE curve of TSC with sinusoidally nanostructured [45].

    图 11  (a)界面复合模型; (b)隧道复合模型[47]

    Fig. 11.  (a) Interface composite model; (b) tunnel composite model [47].

    图 12  (a)钙钛矿/HIT TSC结构示意图; (b) ITO/玻璃基底和nc-Si:H/玻璃基底的吸收光谱; (c)具有不同互联层的TSC的反射光谱[48]

    Fig. 12.  (a) Schematic view of perovskite/SHJ TSC; (b) absorptance of ITO/glass and nc-Si:H/glass; (c) reflectance of TSC with different interconnect layer [48].

    图 13  (a)无互联层的TSC结构示意图; (b)不同p++掺杂浓度拟合出的SnO2/p++界面的暗态J-V曲线, 插图为界面存在SiO2时的能带示意图; 16 cm2的最优TSC的(c)J-V曲线, 插图为稳态PCE曲线和(d)EQE曲线和吸收光谱[49]

    Fig. 13.  (a) Schematic device design of interface-layer-free TSC. (b) simulated dark J-V curves for the SnO2/p++ silicon interface with varied p++ doping concentration. Inset is corresponding band diagram with native SiO2. (c) J-V curve and the steady-state PCE in the inset and (d) EQE and the total absorbance for the champion tandem device on 16 cm2 [49]

    表 1  高效率钙钛矿/晶硅叠层电池性能

    Table 1.  Performance of high efficiency perovskite/c-Si solar cells.

    Device structureSi cellICsPerovskiteBandgapETLHTLArea/PCE/Jsc/Voc/FF/Ref.
    /eVcm2%(mA·cm–2)V%
    n-i-pn-BSFn++/p++ a-Si:HCH3NH3PbI31.61TiO2Spiro-OMeTAD113.711.51.5875[9]
    n-i-pn- PERCITOCs0.07Rb0.03FA0.765MA0.135Pb-(I0.85Br0.15)31.62TiO2Spiro-OMeTAD122.817.61.7573.8[26]
    n-i-pn-PERC(FAPbI3)0.83(MAPbBr3)0.171.59SnO2Spiro-OMeTAD1621.916.21.7478[27]
    n-i-pn-HJTITOFA 0.5MA0.38Cs0.12PbI2.04Br0.961.69SnO2Spiro-OMeTAD0.0622.216.51.65581.1[28]
    n-i-pn-HJTn+/p+nc-Si:HCs0.19FA0.81Pb-(I0.78Br0.22)31.63C60Spiro-OMeTAD0.2522.716.81.75177.1[48]
    n-i-pn-PERCCH3NH3PbI3SnO2Spiro-OMeTAD1615.615.51.65961[49]
    p-i-nHJTn+/p+nc-Si:HCsxFA1–xPb(I Br)3C60/SnO2Spiro-TTB1.4225.5219.51.78873.1[42]
    p-i-nn-HJTITOCs0.15(FA0.83MA0.17)0.85Pb(I0.7Br0.3)31.64C60/SnO2PTAA0.4925.417.81.819.4[29]
    p-i-np-BSFITO(FAMAPbI3)0.8(MAPbBr3)0.21.64PCBMPTAA0.2721.0216.131.64579.23[36]
    p-i-nHJTInOxCs0.05MA0.15FA0.8PbI2.25Br0.751.68C60/SnOxNiOx0.8322619.81.777[37]
    p-i-nn-HJTITOCs0.05(FA0.83MA0.17)0.95Pb(I1–xBrx)31.63PC61BMF4-TCNQ doped polyTPD and NPD1.08825.319.021.79374.3[40]
    p-i-nHJTITOCs0.25FA0.75Pb(I0.85Br0.15)3+MAPbCl31.67C60/SnOPolyTPD/NiOx127.1319.121.88675.3[30]
    p-i-nn-HJTITOCs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)31.68C60Me-4PACz(SAM)1.06429.1519.261.979.52[35]
    p-i-nn-HJTITOCs0.1MA0.9Pb(I0.9Br0.1)3C60/SnO2PTAA0.0492619.21.8274.4[44]
    p-i-nn-HJTn+/p+nc-Si:HFA0.9Cs0.1PbI2.87Br0.131.63C60/SnO2Spiro-TTB0.509127.4819.781.8876.85[46]
    p-i-nn-TOPConITOCs0.22FA0.78Pb(Cl0.03 Br0.15I0.85)3C60/SnO2NiOx127.6319.681.79478.27[41]
    下载: 导出CSV
  • [1]

    Yu Z S J, Carpenter J V, Holman Z C 2018 Nat. Energy 3 747Google Scholar

    [2]

    Song Z N, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D, Heben M J 2017 Energy Environ. Sci. 10 1297Google Scholar

    [3]

    Gu W B, Ma T, Li M, Shen L, Zhang Y J 2020 Appl. Energy 258 114075Google Scholar

    [4]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 5 860

    [5]

    Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar

    [6]

    Wang S L, Wang P Y, Chen B B, Li R J, Ren N Y, Li Y C, Shi B, Huang Q, Zhao Y, Grätzel M, Zhang X D 2022 eScience 2 339Google Scholar

    [7]

    Yadav C, Kumar S 2022 Opt. Mater. 123 111847Google Scholar

    [8]

    Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F 2018 ACS Energy Lett. 3 305Google Scholar

    [9]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [10]

    NREL Best Research-Cell Efficiencies. https//www.nrel.gov/pv/cell-efficiency.html.

    [11]

    Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D 2017 J. Am. Chem. Soc. 139 11117Google Scholar

    [12]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [13]

    Jacobsson T J, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M, Hagfeldt A 2016 Energy Environ. Sci. 9 1706Google Scholar

    [14]

    Werner J J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [15]

    Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Gratzel M, Noufi R, Buonassisi T Salleo A McGehee M D 2015 Energy Environ. Sci. 8 956Google Scholar

    [16]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Gratzel M, De Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [17]

    Todorov T, Gershon T, Gunawan O, Lee Y S, Sturdevant C, Chang L Y, Guha S 2015 Adv. Energy Mater. 5 1500799Google Scholar

    [18]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [19]

    N Unger E L Bowring A R Tassone C J Pool V L Gold- Parker A Cheacharoen R Stone K H Hoke E T Toney M F McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [20]

    Dong Q Yuan Y B Shao Y C Fang Y J Wang Q Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [21]

    Krückemeier L; Rau; U, Stolterfoht M, Kirchartz T 2020 Adv. Energy Mater. 10 1902573Google Scholar

    [22]

    R T Ross 1967 J. Chem. Phys. 46 4590Google Scholar

    [23]

    Jost M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [24]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A. R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [25]

    Rajagopal A, Yang Z B, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K 2017 Adv. Mater. 29 1702140Google Scholar

    [26]

    Wu Y L, Yan D, Peng J, Duong T, Wan Y M, Phang S P, Shen H P, Wu N D, Barugkin C, Fu X, Surve S, Grant D, Walter D, White T P, Catchpole K R, Weber K J 2017 Energy Environ. Sci. 10 2472Google Scholar

    [27]

    Zheng J H, Mehrvarz H, Ma F J, Lau C F, Green M A, Huang S J, Ho-Baillie A W 2018 Acs Energy Lett. 3 2299Google Scholar

    [28]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [29]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [30]

    Xu J X, Boyd C C, Yu Z S, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, F. A. M. van Hest M, Berry J J, Luther J M, Holman Z C, McGehee1 M D 2020 Science 367 1097Google Scholar

    [31]

    Y Yang C Liu Y Ding Z Arain S Wang X Liu T Hayat A Alsaedi, S Dai 2019 ACS Appl. Mater. Interfaces 11 34964Google Scholar

    [32]

    D Liu H Zheng Y Wang L Ji H Chen W Yang L Chen Z Chen, S Li 2020 Chem. Eng. J. 396 125010Google Scholar

    [33]

    Dong H, Xi J, Zuo L J, Li R J, Yang Y G, Wang D D, Yu Y, Ma L, Ran C X, Gao W Y, Jiao B, Xu J, Lei T, Wei F J, Yuan F, Zhang L, Shi Y F, Hou X, Wu Z X 2019 Adv. Funct. Mater. 29 1808119Google Scholar

    [34]

    Canil L, Cramer T, Fraboni B, Ricciarelli D, Meggiolaro D, Singh A, Abate A 2021 Energy Environ. Sci. 14 1429Google Scholar

    [35]

    Al-Ashouri A, Kohnen E, Li B, et al. 2020 Science 370 1300Google Scholar

    [36]

    Kim C U, Yu J C, Jung E D, Choi I Y, Park W, Lee H, Kim I, Lee D K, Hong K K, Song M H, Choia K J 2019 Nano Energy 60 213Google Scholar

    [37]

    Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135Google Scholar

    [38]

    Kim D, Jung H J, Park I J, et al. 2020 Science 368 155Google Scholar

    [39]

    Jager K, Korte L, Rech B, Albrecht S 2017 Opt. Express 25 473Google Scholar

    [40]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [41]

    Wu Y, Zheng P, Peng J, Xu M, Chen Y, Surve S, Weber K 2022 Adv. Energy Mater. 12 2200821Google Scholar

    [42]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [43]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [44]

    Chen B, Zhengshan J Y, Manzoor S, Wang S, Weig W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [45]

    Tockhorn P, Sutter J, Cruz A, et al. 2022 Nat. Nanotechnol. 17 1214Google Scholar

    [46]

    Li Y C, Shi B A, Xu Q J, Yan L L, Ren N Y, Chen Y L, Han W, Huang Q, Zhao Y, Zhang X D 2021 Adv. Energy Mater. 11 2102046Google Scholar

    [47]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社) 第60页

    Shen W Z, Li Z P 2014 Silicon-based Heterojunction Solar Cell Physics and Devices (Beijing: Science Press) p60 (in Chinese)

    [48]

    Sahli F, Kamino B A, Werner J, Brauninger M, Paviet-Salomon B, Barraud L, Monnard R, Seif J P, Tomasi A, Jeangros Q 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [49]

    Zheng J H, Lau C F J, Mehrvarz H, et al. 2018 Energy Environ. Sci. 11 2432Google Scholar

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰, 李翔, 杨雪莹, 白杨. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法. 物理学报, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [3] 杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹. 丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池. 物理学报, 2024, 73(15): 158401. doi: 10.7498/aps.73.20240561
    [4] 钟建成, 张笑天, 林常青, 薛阳, 唐欢, 黄丹. 全黄铜矿CuGaSe2/CuInSe2两端叠层太阳能电池的顶端设计与优化. 物理学报, 2024, 73(10): 103101. doi: 10.7498/aps.73.20240187
    [5] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [6] 方正, 张飞, 秦校军, 杨柳, 靳永斌, 周养盈, 王兴涛, 刘云, 谢立强, 魏展画. 减小边缘复合助力28%效率的四端钙钛矿/硅叠层太阳能电池. 物理学报, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [10] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [11] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹. 钙钛矿/硅异质结叠层太阳电池: 光学模拟的研究进展. 物理学报, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [12] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [13] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [14] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 物理学报, 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [15] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [16] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [17] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [18] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [19] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [20] 韩大星, 王万录, 张 智. 非晶硅电致发光机理及用电致发光谱研究太阳能电池本征层中的缺陷态能量分布. 物理学报, 1999, 48(8): 1484-1490. doi: 10.7498/aps.48.1484
计量
  • 文章访问数:  19094
  • PDF下载量:  924
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-12-09
  • 上网日期:  2023-01-05
  • 刊出日期:  2023-03-05

/

返回文章
返回