搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属目标对贝塞尔涡旋波束的近场电磁散射特性

陈鑫淼 李海英 吴涛 孟祥帅 黎凤霞

引用本文:
Citation:

金属目标对贝塞尔涡旋波束的近场电磁散射特性

陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞

Near-field electromagnetic scattering of Bessel vortex beam by metal target

Chen Xin-Miao, Li Hai-Ying, Wu Tao, Meng Xiang-Shuai, Li Feng-Xia
PDF
HTML
导出引用
  • 相较于平面波, 贝塞尔涡旋波束作为典型的涡旋波束, 以其携带轨道角动量(orbital angular momentum, OAM)、无衍射、自重建的特性, 使其在雷达检测、目标识别与成像等领域具有更加显著的竞争力 . 本文根据物理光学法和三角形面片建模, 并结合贝塞尔涡旋波束的角谱展开法, 导出了贝塞尔涡旋波束入射到任意金属目标的散射近场表达式, 通过与FEKO软件仿真结果对比验证了本文方法的正确性. 数值计算了简单和组合目标的散射近场的幅相和OAM分布以及雷达散射截面(radar cross section, RCS), 分析了波束参数、接收面的距离和目标偏移波束距离等因素的影响. 结果表明贝塞尔涡旋波束照射下的目标的近场幅相和OAM扰动与多种因素相关, 这为进一步利用近场散射特征获得更多的目标信息奠定了基础.
    Bessel vortex beam, as a typical vortex beam, has the characteristics of carrying orbital angular momentum (OAM), no diffraction, and self-reconstruction, which makes it more competitive than plane wave in the field of future vortex beam target detection and imaging. In order to study the near-field electromagnetic scattering of a vortex beam by a metal target, the expression of the near-scattering field of Bessel vortex beam incident on any metal target is obtained by using the physical optics method, triangular surface element modeling, and the plane wave angular spectrum expansion method of vector Bessel vortex beam. The correctness of the proposed method is verified by comparing with the simulation results of FEKO software. The amplitude distribution and phase distribution of electric field, the OAM spectrum distribution and radar cross section (RCS) of the near-scattering field of the Bessel vortex beam incident on the simple target and the combined target are calculated. The effects of beam parameters, receiving distance, target shape and the positions of beam transmitting and receiving surfaces on near-field scattering results are numerically calculated. In addition, the distributions of near-field OAM spectra under different conditions and the near-field RCS distributions of different targets are given. The numerical results show that the near-field results of Bessel vortex beam incident on metal targets are related to the beam parameters, and conform to the law of Bessel beam changing with parameters. The near-field electric amplitude distribution is affected by the distance between the receiving surface and the target, but the phase distribution is hardly affected. The near-field scattering results reflect the changes of target shape. Under normal incidence, when the target is regular and symmetrical, the amplitude distribution and phase distribution are relatively regular, and the main mode is dominant. When the beam is obliquely incident on or does not fully illuminate the target, the amplitude distribution and phase distribution change, which will lead the derived mode to increase. In particular, when the target and the receiving surface both deviate from the incident beam, the OAM disturbance is the most severe. In the near-field RCS distribution, the RCS distributions of different targets are obviously different, and the results of E plane and H plane are also different. It can be seen from the numerical calculation results that the near-field scattering of Bessel vortex beam by a metal target contains a variety of information. The application of vortex electromagnetic wave will help improve the information acquisition of electromagnetic wave and target detection capability. The results in this work can provide a reference for target imaging and vortex radar detection.
      通信作者: 李海英, lihy@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171355, 62101426, 62201415)、军委科技委基础加强计划技术领域基金(批准号: 2021-JCJQ-JJ-1009)、高等学校学科创新引智计划(批准号: B17035)和陕西省自然科学基础研究计划(批准号: 2021JM-135)资助的课题.
      Corresponding author: Li Hai-Ying, lihy@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171355, 62101426, 62201415), the Military Commission Science and Technology Commission Foundation for Basic Strengthening Plan (Grant No. 2021-JCJQ-JJ-1009), the 111 Project (Grant No. B17035) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JM-135).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mawet D, Riaud P, Absil O, Surdej J 2005 Astrophys. J. 633 1191Google Scholar

    [3]

    Swartzlander G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [4]

    Arlt J, Dholakia K, Allen L, Padgett M J 1998 J. Modern Opt. 45 1231

    [5]

    Vaziri A, Weihs G, Zeilinger A 2002 J. Optics B 4 S47Google Scholar

    [6]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [7]

    Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [8]

    Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antenn. Wirel. Pr. 14 711Google Scholar

    [9]

    Tang B, Guo K Y, Wang J P, Sheng X Q 2017 IEEE Antenn. Wirel. Pr. 16 2975Google Scholar

    [10]

    Zhang C, Chen D 2017 IEEE Antenn. Wirel. Pr. 16 2316Google Scholar

    [11]

    Bu X X, Zhang Z, Chen L Y, Liang X D, Tang H B, Wang X M 2018 IEEE Antenn. Wirel. Pr. 17 764Google Scholar

    [12]

    Chen H T, Zhang Z Q, Yu J 2020 Appl. Comput. Electrom. 35 129Google Scholar

    [13]

    Chen Z, Zong X, Zhang Z, Que X, Nie Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 p1

    [14]

    蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 物理学报 70 238401Google Scholar

    Jiang J H, Yu S X, Kou N, Ding Z, Zhang Z P 2021 Acta Phys. Sin. 70 238401Google Scholar

    [15]

    Nayeri P, Elsherbeni A Z, Yang F 2021 Appl. Comput. Electrom. 28 284

    [16]

    Durnin J 1987 J. Opt. Soc. 4 651Google Scholar

    [17]

    MacDonald R P, Boothroyd S A, Okamoto T, Chrostowski J, Syrett B A 1996 Opt. Commun. 122 169Google Scholar

    [18]

    戴玉蓉, 丁德胜 2011 物理学报 60 124302Google Scholar

    Dai Y R, Ding D S 2011 Acta Phys. Sin. 60 124302Google Scholar

    [19]

    Velchev I, Ubachs W 2001 Opt. Lett. 26 530Google Scholar

    [20]

    Wu Z, Wu J J, Li H Y, Qu T, Meng X S, Xu Q, Wu Z S, Bai J, Yang L, Gong L, Yun Y 2022 IEEE Antenn. Wirel. Pr. 21 1288Google Scholar

    [21]

    Shao G H, Yan S C, Luo W, Lu G W, Lu Y Q 2017 Sci. Rep. 7 1062Google Scholar

  • 图 1  贝塞尔涡旋波束入射目标的散射几何模型

    Fig. 1.  Geometric model for scattering of the target illuminated by the Bessel vortex beam.

    图 2  贝塞尔涡旋波束示意图 (a)—(d) x, y, z方向和总场的电场幅值分布; (e)—(h) x, y, z方向和总场的电场相位分布

    Fig. 2.  Schematic for Bessel vortex beam: (a)–(d) The amplitude distribution of Ex, Ey, Ez and Etotal; (e)–(h) the phase distribution of Ex, Ey, Ez and Etotal.

    图 3  目标表面平面子波散射示意图

    Fig. 3.  Schematic for plane wavelet scattering on object surface.

    图 4  (a) 平板目标散射示意图; (b) FEKO仿真与本文方法涡旋波退化的幅相分布结果对比

    Fig. 4.  (a) Schematic for the scattering of a plate; (b) comparison between FEKO simulation results and the vortex wave degradation results.

    图 5  (a) 球体目标散射示意图; (b) FEKO仿真与本文方法的幅相分布结果对比

    Fig. 5.  (a) Schematic for the scattering of a sphere; (b) comparison between FEKO simulation results and the proposed method.

    图 6  10 GHz下不同贝塞尔波束参数下的平板近场幅相分布 (a)—(f) 拓扑荷数$ l = 1, 2, 3 $, 半锥角$\alpha_0 = 10^\circ$; (g)—(l) 半锥角$\alpha_0 = 8^\circ , 10^\circ , 12^\circ$, 拓扑荷数$ l = 2 $; (m) 平板目标散射示意图

    Fig. 6.  Amplitude, phase distribution of scattering near fields with the different Bessel beam parameters at 10 GHz: (a)–(f) Topological charges $l = 1,\; 2,\; 3$, half-cone angle $\alpha_0 = 10^\circ$; (g)–(l) half-cone angles $\alpha_0 = 8^\circ , 10^\circ , 12^\circ$, topological charge $ l = 2 $; (m) schematic for the scattering of a flat.

    图 7  不同距离的接收面处的散射近场幅相分布 (a), (d) z = 0.15 m; (b), (e) z = 0.21 m; (c), (f) z = 0.27 m

    Fig. 7.  Amplitude and phase distribution of near scattering field at different distances of the receiving surface: (a), (d) z = 0.15 m; (b), (e) z = 0.21 m; (c), (f) z = 0.27 m.

    图 8  球锥、圆柱、棱台和船体目标的散射近场的幅相和OAM模态分布 (a)—(d)幅值分布; (e)—(h) 相位分布; (i) OAM模态分布

    Fig. 8.  Amplitude, phase distribution and OAM spectra of the near scattering field of spherical cone, cylinder, truncated pyramid and ship: (a)–(d) Amplitude distributions; (e)–(h) phase distributions; (i) OAM spectra distributions.

    图 9  入射角$ {\theta _0} = 10^\circ $时圆柱、棱台和船体目标的散射近场的幅相和OAM模态分布 (a)—(c)幅值分布; (d)—(f)相位分布; (g) OAM模态分布; (h) 散射几何示意图

    Fig. 9.  Amplitude, phase distribution and OAM spectra of near scattering field of cylinder, truncated pyramid and ship targets at incidence angle $ {\theta _0} = 10^\circ $: (a)–(c) Amplitude distribution; (d)–(f) phase distribution; (g) OAM spectra distribution; (h) schematic for target scattering geometry.

    图 10  偏移入射波束的船体目标前向散射近场的幅相和OAM模态分布 (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $\Delta d = 3\lambda$; (g) $ \Delta d = 1\lambda , 2\lambda , 3\lambda $时的OAM分布; (h) 目标散射几何示意图

    Fig. 10.  Amplitude, phase distribution and OAM spectra of forward near scattering field of ship target with offset incident beam: (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $ \Delta d = 3\lambda $; (g) OAM spectra at $ \Delta d = 1\lambda , 2\lambda , 3\lambda $; (h) schematic for target scattering geometry.

    图 11  偏移入射场的船体目标后向散射近场的幅相分布和OAM模态分布 (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $\Delta d = $$ 4\lambda$; (g) $\Delta d = 1\lambda , \;2\lambda , \;4\lambda$时的OAM分布; (h) 散射几何示意图

    Fig. 11.  Amplitude, phase distribution and OAM spectra of the backward near scattering field of a ship target offset by the incident field: (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $ \Delta d = 4\lambda $; (g) OAM spectra at $\Delta d = 1\lambda ,\; 2\lambda ,\; 4\lambda$; (h) schematic for target scattering geometry.

    图 12  球锥、圆柱、船体目标散射近场的RCS分布 (a)—(c) RCS分布俯视图; (d)—(f) RCS分布主视图

    Fig. 12.  RCS distribution of the near scattering field of different targets: (a)–(c) Top view of RCS distribution; (d)—(f) front view of RCS distribution.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mawet D, Riaud P, Absil O, Surdej J 2005 Astrophys. J. 633 1191Google Scholar

    [3]

    Swartzlander G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [4]

    Arlt J, Dholakia K, Allen L, Padgett M J 1998 J. Modern Opt. 45 1231

    [5]

    Vaziri A, Weihs G, Zeilinger A 2002 J. Optics B 4 S47Google Scholar

    [6]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [7]

    Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [8]

    Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antenn. Wirel. Pr. 14 711Google Scholar

    [9]

    Tang B, Guo K Y, Wang J P, Sheng X Q 2017 IEEE Antenn. Wirel. Pr. 16 2975Google Scholar

    [10]

    Zhang C, Chen D 2017 IEEE Antenn. Wirel. Pr. 16 2316Google Scholar

    [11]

    Bu X X, Zhang Z, Chen L Y, Liang X D, Tang H B, Wang X M 2018 IEEE Antenn. Wirel. Pr. 17 764Google Scholar

    [12]

    Chen H T, Zhang Z Q, Yu J 2020 Appl. Comput. Electrom. 35 129Google Scholar

    [13]

    Chen Z, Zong X, Zhang Z, Que X, Nie Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 p1

    [14]

    蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 物理学报 70 238401Google Scholar

    Jiang J H, Yu S X, Kou N, Ding Z, Zhang Z P 2021 Acta Phys. Sin. 70 238401Google Scholar

    [15]

    Nayeri P, Elsherbeni A Z, Yang F 2021 Appl. Comput. Electrom. 28 284

    [16]

    Durnin J 1987 J. Opt. Soc. 4 651Google Scholar

    [17]

    MacDonald R P, Boothroyd S A, Okamoto T, Chrostowski J, Syrett B A 1996 Opt. Commun. 122 169Google Scholar

    [18]

    戴玉蓉, 丁德胜 2011 物理学报 60 124302Google Scholar

    Dai Y R, Ding D S 2011 Acta Phys. Sin. 60 124302Google Scholar

    [19]

    Velchev I, Ubachs W 2001 Opt. Lett. 26 530Google Scholar

    [20]

    Wu Z, Wu J J, Li H Y, Qu T, Meng X S, Xu Q, Wu Z S, Bai J, Yang L, Gong L, Yun Y 2022 IEEE Antenn. Wirel. Pr. 21 1288Google Scholar

    [21]

    Shao G H, Yan S C, Luo W, Lu G W, Lu Y Q 2017 Sci. Rep. 7 1062Google Scholar

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [3] 韩俊杰, 钱思贤, 朱传名, 黄志祥, 任信钢, 程光尚. 基于双极化编码超表面生成的双模式轨道角动量. 物理学报, 2023, 72(14): 148101. doi: 10.7498/aps.72.20230457
    [4] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] 冯加林, 施宏宇, 王远, 张安学, 徐卓. 基于场变换理论的大角度涡旋电磁波生成方法. 物理学报, 2020, 69(13): 135201. doi: 10.7498/aps.69.20200365
    [9] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [12] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [13] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [14] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  3599
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-03-17
  • 上网日期:  2023-03-23
  • 刊出日期:  2023-05-20

/

返回文章
返回