搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅纳米线阵列光电探测器研究进展

刘晓轩 孙飞扬 吴颖 杨盛谊 邹炳锁

引用本文:
Citation:

硅纳米线阵列光电探测器研究进展

刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁

Research progress of silicon nanowires array photodetectors

Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo
PDF
HTML
导出引用
  • 硅(Si)作为最重要的半导体材料之一, 被广泛应用于太阳电池、光电探测器等光电器件中. 由于硅和空气之间的折射率差异, 大量的入射光在硅基表面即被反射. 为了抑制这种反射带来的损失, 多种具有强陷光效应的硅纳米结构被研发出来. 采用干法蚀刻方案多数存在成本高昂、制备复杂的问题, 而湿法蚀刻方案所制备的硅纳米线阵列则存在间距等参数可控性较低、异质结有效面积较小等问题. 聚苯乙烯微球掩膜法可结合干法及湿法蚀刻各自的优点, 容易得到周期性硅纳米线(柱)阵列. 本文首先概述了硅纳米线结构的性质和制备方法, 总结了有效提升硅纳米线(柱)阵列光电探测器性能的策略, 并分析了其中存在的问题. 进而, 讨论了基于硅纳米线(柱)阵列光电探测器的最新进展, 重点关注其结构、光敏层的形貌以及提高光电探测器性能参数的方法. 最后, 简要介绍了其存在的主要问题及可能的解决方案.
    As one of the most important semiconductor materials, silicon (Si) is widely used in optoelectronic devices such as solar cells and photodetectors. Owing to the difference in refractive index between silicon and air, a large amount of incident light is reflected back into the air from the silicon surface. In order to suppress the loss caused by this reflection, a variety of silicon nanostructures with strong trapping effect have been developed. Most of the dry-etching schemes encounter the problems of high cost and complex preparation, while the silicon nanowires array prepared by the wet-etching schemes has the problems of low controllability of some parameters such as the spacing between two adjacent nanowires, and the small effective area of heterojunction. The method of using polystyrene microsphere as the mask can integrate the advantages of dry-etching method and wet-etching method, and it is easy to obtain periodic silicon nanowires (pillars) array. In this paper, first, we summarize the properties and preparation methods for silicon nanowires structure, the strategies to effectively improve the performance of silicon nanowires (pillars) array photodetectors, Then we analyze the existing problems. Further, the latest developments of silicon nanowires (pillars) array photodetector are discussed, and the structure, morphology of photosensitive layer and methods to improve the performance parameters of silicon nanowires (pillars) array photodetector are analyzed. Among them, we focus on the ultraviolet light sensitive silicon based photodetector and its method to show tunable and selective resonance absorption through leaky mode resonance, the silicon nanowires array photodetector modified with metal nanoparticles and the method of improving performance through surface plasmon effect, and plasmon hot electrons. Heterojunction photodetectors composed of various low-dimensional materials and silicon nanowires (pillars) array, and methods to improve the collection efficiency of photogenerated charge carriers through the “core/shell” structure, methods to expand the detection band range of silicon-based photodetectors by integrating down-conversion light-emitting materials and silicon nanowires (pillars) array, flexible silicon nanowires array photodetectors and their various preparation methods, are all introduced. Then, the main problems that a large number of defect states will be generated on the silicon nanostructure surface in the MACE process are briefly introduced, and several possible solutions for defect passivation are also presented. Finally, the future development for silicon nanowires (pillars) array photodetectors is prospected.
      通信作者: 杨盛谊, syyang@bit.edu.cn
    • 基金项目: 国家重点研发计划(批准号: SQ2019YFB220038)、国家自然科学基金(批准号: 1227041254)、中央高校基本科研业务费(批准号: 020CX02002, BITBLR2020013)和广西大学“省部共建特色金属材料与组合结构全寿命安全国家重点实验室”开放基金(批准号: 2021GXYSOF18)资助的课题.
      Corresponding author: Yang Sheng-Yi, syyang@bit.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. SQ2019YFB220038), the National Natural Science Foundation of China (Grant No. 1227041254), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 020CX02002, BITBLR2020013), and the Opening Fund of the “State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures” at Guangxi University, China (Grant No. 2021GXYSOF18).
    [1]

    Li C, Liu D, Dai D 2019 Nanophotonics 8 227Google Scholar

    [2]

    Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar

    [3]

    Lee S H, Kang J S, Kim D 2018 Materials 11 2557Google Scholar

    [4]

    Margalit N, Xiang C, Bowers S M, Bjorlin A, Blum R, Bowers J E 2021 Appl. Phys. Lett. 118 220501Google Scholar

    [5]

    Wang Y, Ding K, Sun B, Lee ST, Jie J 2016 Nano Res. 9 72Google Scholar

    [6]

    Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D 2021 Light Sci. Appl. 10 123Google Scholar

    [7]

    Zhou J, Xin K, Zhao X, Li D, Wei Z, Xia J 2022 Sci. China Mater. 65 876Google Scholar

    [8]

    Liu J J, Qu J L, Kirchartz T, Song J 2021 J. Mater. Chem. A 9 20919Google Scholar

    [9]

    Li C, Zhao J H, Chen Z G 2021 J. Alloy. Compd. 883 160765Google Scholar

    [10]

    Arjmand T, Legallais M, Nguyen T T T, et al. 2022 Nanomaterials 12 1043Google Scholar

    [11]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. 31 050825Google Scholar

    [12]

    Huo C, Wang J, Fu H, Li X, Yang Y, Wang H, Mateen A, Farid G, Peng K Q 2020 Adv. Funct. Mater. 30 2005744Google Scholar

    [13]

    Tian W, Sun H, Chen L, Wangyang P, Chen X, Xiong J, Li L 2019 InfoMat 1 140Google Scholar

    [14]

    Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar

    [15]

    Wang X, Tang Y, Wang W, Zhao H, Song Y, Kang C, Wang K 2022 Nanomaterials 12 1824Google Scholar

    [16]

    Rasool K, Rafiq M A, Ahmad M, Imran Z, Batool S S, Hasan M M 2013 AIP Adv. 3 082111Google Scholar

    [17]

    Liu J Y, Wang J J, Lin D H, Wang J, Fu C, Liang F X, Li X, Gu Z P, Wu D, Luo L B 2022 ACS Appl. Mater. Interfaces 14 32341Google Scholar

    [18]

    Ohmi T, Imaoka T, Kezuka T, Takano J, Kogure M 1993 J. Electrochem. Soc. 140 811Google Scholar

    [19]

    Morinaga H, Suyama M, Ohmi T 1994 J. Electrochem. Soc. 141 2834Google Scholar

    [20]

    Kim J S, Morita H, Joo J D, Ohmi T 1997 J. Electrochem. Soc. 144 3275Google Scholar

    [21]

    Morinaga H, Futatsuki T, Ohmi T, Fuchita E, Oda M, Hayashi C 1995 J. Electrochem. Soc. 142 966Google Scholar

    [22]

    Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J 2005 Angew. Chem. Int. Edit. 44 2737Google Scholar

    [23]

    Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, Zhu J 2006 Adv. Funct. Mater. 16 387Google Scholar

    [24]

    Peng K, Lu A, Zhang R, Lee S T 2008 Adv. Funct. Mater. 18 3026Google Scholar

    [25]

    Zhang X G, Collins S D, Smith R L 1989 J. Electrochem. Soc. 136 1561Google Scholar

    [26]

    Kolasinski K W 2010 J. Phys. Chem. C 114 22098Google Scholar

    [27]

    Turner D R 1960 J. Electrochem. Soc. 107 810Google Scholar

    [28]

    Peng K Q, Yan Y J, Gao S P, Zhu J 2002 Adv. Mater. 14 1164Google Scholar

    [29]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107Google Scholar

    [30]

    Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S 2006 Chem. Eur. J. 12 7942Google Scholar

    [31]

    Peng K, Zhu J 2003 J. Electroanal. Chem. 558 35Google Scholar

    [32]

    Tsujino K, Matsumura M 2005 Electrochem. Solid-St. 8 C193Google Scholar

    [33]

    Hildreth O J, Fedorov A G, Wong C P 2012 ACS Nano 6 10004Google Scholar

    [34]

    Chen H, Wang H, Zhang X H, Lee C S, Lee S T 2010 Nano Lett. 10 864Google Scholar

    [35]

    Kim J, Kim Y H, Choi S H, Lee W 2011 ACS Nano 5 5242Google Scholar

    [36]

    Chen Y, Li L, Zhang C, Tuan C C, Chen X, Gao J, Wong C P 2017 Nano Lett. 17 1014Google Scholar

    [37]

    Chen Y, Zhang C, Li L, Tuan C C, Wu F, Chen X, Gao J, Ding Y, Wong C P 2017 Nano Lett. 17 4304Google Scholar

    [38]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744Google Scholar

    [39]

    Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon A A 2013 ACS Appl. Mater. Interfaces 5 9620Google Scholar

    [40]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [41]

    Hildreth O J, Brown D, Wong C P 2011 Adv. Funct. Mater. 21 3119Google Scholar

    [42]

    Wang J, Hu Y, Zhao H, Fu H, Wang Y, Huo C, Peng K Q 2018 Adv. Mater. Interfaces 5 1801132Google Scholar

    [43]

    Lai R A, Hymel T M, Narasimhan V K, Cui Y 2016 ACS Appl. Mater. Interfaces 8 8875Google Scholar

    [44]

    Li L, Tuan C C, Zhang C, Chen Y, Lian G, Wong C P 2019 J. Microelectromech. Syst. 28 143Google Scholar

    [45]

    Li L, Zhao X, Wong C P 2015 ECS J. Solid State Sci. Technol. 4 P337Google Scholar

    [46]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [47]

    Han C, Chen Z, Zhang N, Colmenares J C, Xu Y J 2015 Adv. Funct. Mater. 25 221Google Scholar

    [48]

    Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M 2012 Adv. Mater. 24 5045Google Scholar

    [49]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841Google Scholar

    [50]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296Google Scholar

    [51]

    Kholmanov I N, Domingues S H, Chou H, et al. 2013 ACS Nano 7 1811Google Scholar

    [52]

    Huang Z G, Lin X X, Zeng Y, et al. 2015 Sol. Energy Mater. Sol. Cells 143 302Google Scholar

    [53]

    Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549Google Scholar

    [54]

    Wan X, Xu Y, Guo H, et al. 2017 NPJ 2D Mater. Appl. 1 4Google Scholar

    [55]

    Mokkapati S, Saxena D, Tan H H, Jagadish C 2015 Sci. Rep. 5 15339Google Scholar

    [56]

    Fountaine K T, Whitney W S, Atwater H A 2014 J. Appl. Phys. 116 153106Google Scholar

    [57]

    Cao L, White J S, Park J S, Schuller J A, Clemens B M, Brongersma M L 2009 Nat. Mater. 8 643Google Scholar

    [58]

    Wang B, Leu P W 2012 Opt. Lett. 37 3756Google Scholar

    [59]

    Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X, Luo L B 2021 ACS Nano 15 16729Google Scholar

    [60]

    Nusir A I, Bauman S J, Marie M S, Herzog J B, Manasreh M O 2017 Appl. Phys. Lett. 111 171103Google Scholar

    [61]

    Luo L B, Zeng L H, Xie C, Yu Y Q, Liang F X, Wu C Y, Wang L, Hu J G 2014 Sci. Rep. 4 3914Google Scholar

    [62]

    Kim K, Yoon S, Seo M, Lee S, Cho H, Meyyappan M, Baek C K 2019 Nat. Electron. 2 572Google Scholar

    [63]

    Vasa P, Lienau C 2010 Angew. Chem. Int. Edit. 49 2476Google Scholar

    [64]

    Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar

    [65]

    Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J, Tu Y 2017 Nanotechnology 28 275202Google Scholar

    [66]

    Huang Y, Liang H, Zhang Y, Yin S, Cai C, Liu W, Jia T 2021 ACS Appl. Nano Mater. 4 1567Google Scholar

    [67]

    Wang H, Wang F, Xu T, et al. 2021 Nano Lett. 21 7761Google Scholar

    [68]

    Mao C H, Dubey A, Lee F J, et al. 2021 ACS Appl. Mater. Interfaces 13 4126Google Scholar

    [69]

    Xie C, Nie B, Zeng L, Liang F X, Wang M Z, Luo L, Feng M, Yu Y, Wu C Y, Wu Y, Yu S H 2014 ACS Nano 8 4015Google Scholar

    [70]

    Mondal H, Dey T, Basori R 2021 ACS Appl. Nano Mater. 4 11938Google Scholar

    [71]

    Chandra A, Giri S, Das B, Ghosh S, Sarkar S, Chattopadhyay K K 2021 Appl. Surf. Sci. 548 149256Google Scholar

    [72]

    Liang W, Wang L, Li Y, Zhang F, Chen X, Wu D, Tian Y, Li X, Shan C, Shi Z 2021 Mater. Today Phys. 18 100398Google Scholar

    [73]

    Feng B, Pan X, Liu T, Tian S, Wang T, Chen Y 2021 Nano Lett. 21 5655Google Scholar

    [74]

    Tong X W, Wang J J, Li J X, Hu X F, Wu D, Luo L B 2021 Sensor. Actuat. A-Phys. 322 112625Google Scholar

    [75]

    Sun K, Jing Y, Park N, Li C, Bando Y, Wang D 2010 J. Am. Chem. Soc. 132 15465Google Scholar

    [76]

    Hong Q, Cao Y, Xu J, Lu H, He J, Sun J L 2014 ACS Appl. Mater. Interfaces 6 20887Google Scholar

    [77]

    Cao Y, Zhu J, Xu J, He J, Sun J L, Wang Y, Zhao Z 2014 Small 10 2345Google Scholar

    [78]

    Das B, Das N S, Sarkar S, Chatterjee B K, Chattopadhyay K K 2017 ACS Appl. Mater. Interfaces 9 22788Google Scholar

    [79]

    Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar

    [80]

    Henning A, Sangwan V K, Bergeron H, et al. 2018 ACS Appl. Mater. Interfaces 10 16760Google Scholar

    [81]

    Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G 2021 Phys. Status Solidi R. 15 2000537Google Scholar

    [82]

    Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W 2021 Sensors 21 6146Google Scholar

    [83]

    Mao J, Zhang B, Shi Y, Wu X, He Y, Wu D, Jie J, Lee C S, Zhang X 2022 Adv. Funct. Mater. 32 2108174Google Scholar

    [84]

    Lu J, Sheng X, Tong G, Yu Z, Sun X, Yu L, Xu X, Wang J, Xu J, Shi Y, Chen K 2017 Adv. Mater. 29 1700400Google Scholar

    [85]

    Mihalache I, Radoi A, Pascu R, Romanitan C, Vasile E, Kusko M 2017 ACS Appl. Mater. Interfaces 9 29234Google Scholar

    [86]

    Zhang M, Wang L, Meng L, et al. 2018 Adv. Opt. Mater. 6 1800077Google Scholar

    [87]

    Weisse J M, Kim D R, Lee C H, Zheng X 2011 Nano Lett. 11 1300Google Scholar

    [88]

    Mulazimoglu E, Coskun S, Gunoven M, Butun B, Ozbay E, Turan R, Unalan H E 2013 Appl. Phys. Lett. 103 083114Google Scholar

    [89]

    Xu Y, Shen H, Yue Z, Wang S, Zhao Q, Wang Z 2022 Surf. Interfaces 33 102288Google Scholar

    [90]

    Chee K W A, Ghosh B K, Saad I, Hong Y, Xia Q H, Gao P, Ye J, Ding Z J 2022 Nano Energy 95 106899Google Scholar

    [91]

    Dan Y, Seo K, Takei K, Meza J H, Javey A, Crozier K B 2011 Nano Lett. 11 2527Google Scholar

    [92]

    Yan J, Ge K, Li H, Yang X, Chen J, Wan L, Guo J, Li F, Xu Y, Song D, Flavel B S, Chen J 2021 Nanoscale 13 11439Google Scholar

  • 图 1  金属辅助硅蚀刻的微观解释[19]

    Fig. 1.  Microscopic interpretation of metal-assisted chemical etching[19] .

    图 2  硅纳米柱阵列的蚀刻流程 (a)和蚀刻好的Si-NPs阵列示意图(b)[38]

    Fig. 2.  Etching process for Si-NPs array (a) and the schematic diagram of etched Si-NPs array (b)[38] .

    图 3  在光照射下, 硅光敏层中产生光生载流子的原理示意图

    Fig. 3.  Schematic diagram for photogenerated carriers in silicon photosensitive layer under illumination.

    图 4  紫外光敏感的硅基光电探测器件的光响应与波长的关系曲线[59]

    Fig. 4.  Characteristics of responsivity vs. incident wavelength for the silicon-based photodetector which is sensitive to ultraviolet light[59].

    图 5  以硅纳米线为有源层的MSM紫外光电探测器结构示意图 (a)及其响应率与波长的关系曲线(b)[17]

    Fig. 5.  (a) Schematic diagram for MSM ultraviolet photodetector with silicon nanowires as the active layer and (b) the curve for its responsivity vs. the incident wavelength[17].

    图 6  垂直Si-NW阵列尖端互连的p-n结光电探测器[66]

    Fig. 6.  The p-n junction photodetector interconnected at the tips of vertical Si-NW array[66].

    图 7  基于MoS2/Ag-NP/Si-NW异质结的无栅极光电探测器结构示意图(a)及其响应率与入射光功率密度的关系(b)[68]

    Fig. 7.  (a) Schematic diagram of gate-free photodetector based on MoS2/Ag-NP/Si-NW heterostructure and (b) the characteristics of its responsivity vs. incident light power density[68].

    图 8  Si-NW/N-GQD异质结构器件的光生载流子产生机制及传输机理示意图[70]

    Fig. 8.  Schematic diagram of photogenerated carriers generation mechanism and their transmission mechanism for Si-NW/N-GQD heterojunction devices[70].

    图 9  Si-NW/Cs3Cu2I5 纳米晶异质结光电探测器[72]

    Fig. 9.  Photodetector based on Si-NW/Cs3Cu2I5 nanocrystalline heterojunction[72].

    图 10  Si-NW/钙钛矿异质结光电探测器制备流程 (a)及器件结构(b)、能级图(c)和叉指状沟道的SEM照片(d)[81]

    Fig. 10.  Preparation process (a) and device configuration (b), energy level diagram (c) and SEM photo of the interdigital channels (d) for the Si-NW/perovskite heterojunction photodetector[81].

    图 11  高性能Si-NTCA/石墨烯光电探测器结构示意图[82]

    Fig. 11.  Schematic diagram of high-performance Si-NTCA/graphene photodetector[82].

    图 12  n-Bi2Se3/p-SiNWs光电探测器在探测波长范围内的响应率和探测率[15]

    Fig. 12.  Responsivity and detectivity of n-Bi2Se3/p-SiNWs photodetector in the detection wavelength range[15].

    图 13  高质量“共形”Si-NW/MoS2异质结光电探测器的制备流程[83]

    Fig. 13.  Preparation process for high-quality “conformal” Si-NW/MoS2 heterojunction photodetector[83].

    图 14  柔性硅基光电探测器的制备原理示意图[89]

    Fig. 14.  Schematic diagram of the preparation principle for flexible silicon-based photodetectors[89].

  • [1]

    Li C, Liu D, Dai D 2019 Nanophotonics 8 227Google Scholar

    [2]

    Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar

    [3]

    Lee S H, Kang J S, Kim D 2018 Materials 11 2557Google Scholar

    [4]

    Margalit N, Xiang C, Bowers S M, Bjorlin A, Blum R, Bowers J E 2021 Appl. Phys. Lett. 118 220501Google Scholar

    [5]

    Wang Y, Ding K, Sun B, Lee ST, Jie J 2016 Nano Res. 9 72Google Scholar

    [6]

    Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D 2021 Light Sci. Appl. 10 123Google Scholar

    [7]

    Zhou J, Xin K, Zhao X, Li D, Wei Z, Xia J 2022 Sci. China Mater. 65 876Google Scholar

    [8]

    Liu J J, Qu J L, Kirchartz T, Song J 2021 J. Mater. Chem. A 9 20919Google Scholar

    [9]

    Li C, Zhao J H, Chen Z G 2021 J. Alloy. Compd. 883 160765Google Scholar

    [10]

    Arjmand T, Legallais M, Nguyen T T T, et al. 2022 Nanomaterials 12 1043Google Scholar

    [11]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. 31 050825Google Scholar

    [12]

    Huo C, Wang J, Fu H, Li X, Yang Y, Wang H, Mateen A, Farid G, Peng K Q 2020 Adv. Funct. Mater. 30 2005744Google Scholar

    [13]

    Tian W, Sun H, Chen L, Wangyang P, Chen X, Xiong J, Li L 2019 InfoMat 1 140Google Scholar

    [14]

    Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar

    [15]

    Wang X, Tang Y, Wang W, Zhao H, Song Y, Kang C, Wang K 2022 Nanomaterials 12 1824Google Scholar

    [16]

    Rasool K, Rafiq M A, Ahmad M, Imran Z, Batool S S, Hasan M M 2013 AIP Adv. 3 082111Google Scholar

    [17]

    Liu J Y, Wang J J, Lin D H, Wang J, Fu C, Liang F X, Li X, Gu Z P, Wu D, Luo L B 2022 ACS Appl. Mater. Interfaces 14 32341Google Scholar

    [18]

    Ohmi T, Imaoka T, Kezuka T, Takano J, Kogure M 1993 J. Electrochem. Soc. 140 811Google Scholar

    [19]

    Morinaga H, Suyama M, Ohmi T 1994 J. Electrochem. Soc. 141 2834Google Scholar

    [20]

    Kim J S, Morita H, Joo J D, Ohmi T 1997 J. Electrochem. Soc. 144 3275Google Scholar

    [21]

    Morinaga H, Futatsuki T, Ohmi T, Fuchita E, Oda M, Hayashi C 1995 J. Electrochem. Soc. 142 966Google Scholar

    [22]

    Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J 2005 Angew. Chem. Int. Edit. 44 2737Google Scholar

    [23]

    Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, Zhu J 2006 Adv. Funct. Mater. 16 387Google Scholar

    [24]

    Peng K, Lu A, Zhang R, Lee S T 2008 Adv. Funct. Mater. 18 3026Google Scholar

    [25]

    Zhang X G, Collins S D, Smith R L 1989 J. Electrochem. Soc. 136 1561Google Scholar

    [26]

    Kolasinski K W 2010 J. Phys. Chem. C 114 22098Google Scholar

    [27]

    Turner D R 1960 J. Electrochem. Soc. 107 810Google Scholar

    [28]

    Peng K Q, Yan Y J, Gao S P, Zhu J 2002 Adv. Mater. 14 1164Google Scholar

    [29]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107Google Scholar

    [30]

    Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S 2006 Chem. Eur. J. 12 7942Google Scholar

    [31]

    Peng K, Zhu J 2003 J. Electroanal. Chem. 558 35Google Scholar

    [32]

    Tsujino K, Matsumura M 2005 Electrochem. Solid-St. 8 C193Google Scholar

    [33]

    Hildreth O J, Fedorov A G, Wong C P 2012 ACS Nano 6 10004Google Scholar

    [34]

    Chen H, Wang H, Zhang X H, Lee C S, Lee S T 2010 Nano Lett. 10 864Google Scholar

    [35]

    Kim J, Kim Y H, Choi S H, Lee W 2011 ACS Nano 5 5242Google Scholar

    [36]

    Chen Y, Li L, Zhang C, Tuan C C, Chen X, Gao J, Wong C P 2017 Nano Lett. 17 1014Google Scholar

    [37]

    Chen Y, Zhang C, Li L, Tuan C C, Wu F, Chen X, Gao J, Ding Y, Wong C P 2017 Nano Lett. 17 4304Google Scholar

    [38]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744Google Scholar

    [39]

    Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon A A 2013 ACS Appl. Mater. Interfaces 5 9620Google Scholar

    [40]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [41]

    Hildreth O J, Brown D, Wong C P 2011 Adv. Funct. Mater. 21 3119Google Scholar

    [42]

    Wang J, Hu Y, Zhao H, Fu H, Wang Y, Huo C, Peng K Q 2018 Adv. Mater. Interfaces 5 1801132Google Scholar

    [43]

    Lai R A, Hymel T M, Narasimhan V K, Cui Y 2016 ACS Appl. Mater. Interfaces 8 8875Google Scholar

    [44]

    Li L, Tuan C C, Zhang C, Chen Y, Lian G, Wong C P 2019 J. Microelectromech. Syst. 28 143Google Scholar

    [45]

    Li L, Zhao X, Wong C P 2015 ECS J. Solid State Sci. Technol. 4 P337Google Scholar

    [46]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [47]

    Han C, Chen Z, Zhang N, Colmenares J C, Xu Y J 2015 Adv. Funct. Mater. 25 221Google Scholar

    [48]

    Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M 2012 Adv. Mater. 24 5045Google Scholar

    [49]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841Google Scholar

    [50]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296Google Scholar

    [51]

    Kholmanov I N, Domingues S H, Chou H, et al. 2013 ACS Nano 7 1811Google Scholar

    [52]

    Huang Z G, Lin X X, Zeng Y, et al. 2015 Sol. Energy Mater. Sol. Cells 143 302Google Scholar

    [53]

    Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549Google Scholar

    [54]

    Wan X, Xu Y, Guo H, et al. 2017 NPJ 2D Mater. Appl. 1 4Google Scholar

    [55]

    Mokkapati S, Saxena D, Tan H H, Jagadish C 2015 Sci. Rep. 5 15339Google Scholar

    [56]

    Fountaine K T, Whitney W S, Atwater H A 2014 J. Appl. Phys. 116 153106Google Scholar

    [57]

    Cao L, White J S, Park J S, Schuller J A, Clemens B M, Brongersma M L 2009 Nat. Mater. 8 643Google Scholar

    [58]

    Wang B, Leu P W 2012 Opt. Lett. 37 3756Google Scholar

    [59]

    Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X, Luo L B 2021 ACS Nano 15 16729Google Scholar

    [60]

    Nusir A I, Bauman S J, Marie M S, Herzog J B, Manasreh M O 2017 Appl. Phys. Lett. 111 171103Google Scholar

    [61]

    Luo L B, Zeng L H, Xie C, Yu Y Q, Liang F X, Wu C Y, Wang L, Hu J G 2014 Sci. Rep. 4 3914Google Scholar

    [62]

    Kim K, Yoon S, Seo M, Lee S, Cho H, Meyyappan M, Baek C K 2019 Nat. Electron. 2 572Google Scholar

    [63]

    Vasa P, Lienau C 2010 Angew. Chem. Int. Edit. 49 2476Google Scholar

    [64]

    Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar

    [65]

    Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J, Tu Y 2017 Nanotechnology 28 275202Google Scholar

    [66]

    Huang Y, Liang H, Zhang Y, Yin S, Cai C, Liu W, Jia T 2021 ACS Appl. Nano Mater. 4 1567Google Scholar

    [67]

    Wang H, Wang F, Xu T, et al. 2021 Nano Lett. 21 7761Google Scholar

    [68]

    Mao C H, Dubey A, Lee F J, et al. 2021 ACS Appl. Mater. Interfaces 13 4126Google Scholar

    [69]

    Xie C, Nie B, Zeng L, Liang F X, Wang M Z, Luo L, Feng M, Yu Y, Wu C Y, Wu Y, Yu S H 2014 ACS Nano 8 4015Google Scholar

    [70]

    Mondal H, Dey T, Basori R 2021 ACS Appl. Nano Mater. 4 11938Google Scholar

    [71]

    Chandra A, Giri S, Das B, Ghosh S, Sarkar S, Chattopadhyay K K 2021 Appl. Surf. Sci. 548 149256Google Scholar

    [72]

    Liang W, Wang L, Li Y, Zhang F, Chen X, Wu D, Tian Y, Li X, Shan C, Shi Z 2021 Mater. Today Phys. 18 100398Google Scholar

    [73]

    Feng B, Pan X, Liu T, Tian S, Wang T, Chen Y 2021 Nano Lett. 21 5655Google Scholar

    [74]

    Tong X W, Wang J J, Li J X, Hu X F, Wu D, Luo L B 2021 Sensor. Actuat. A-Phys. 322 112625Google Scholar

    [75]

    Sun K, Jing Y, Park N, Li C, Bando Y, Wang D 2010 J. Am. Chem. Soc. 132 15465Google Scholar

    [76]

    Hong Q, Cao Y, Xu J, Lu H, He J, Sun J L 2014 ACS Appl. Mater. Interfaces 6 20887Google Scholar

    [77]

    Cao Y, Zhu J, Xu J, He J, Sun J L, Wang Y, Zhao Z 2014 Small 10 2345Google Scholar

    [78]

    Das B, Das N S, Sarkar S, Chatterjee B K, Chattopadhyay K K 2017 ACS Appl. Mater. Interfaces 9 22788Google Scholar

    [79]

    Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar

    [80]

    Henning A, Sangwan V K, Bergeron H, et al. 2018 ACS Appl. Mater. Interfaces 10 16760Google Scholar

    [81]

    Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G 2021 Phys. Status Solidi R. 15 2000537Google Scholar

    [82]

    Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W 2021 Sensors 21 6146Google Scholar

    [83]

    Mao J, Zhang B, Shi Y, Wu X, He Y, Wu D, Jie J, Lee C S, Zhang X 2022 Adv. Funct. Mater. 32 2108174Google Scholar

    [84]

    Lu J, Sheng X, Tong G, Yu Z, Sun X, Yu L, Xu X, Wang J, Xu J, Shi Y, Chen K 2017 Adv. Mater. 29 1700400Google Scholar

    [85]

    Mihalache I, Radoi A, Pascu R, Romanitan C, Vasile E, Kusko M 2017 ACS Appl. Mater. Interfaces 9 29234Google Scholar

    [86]

    Zhang M, Wang L, Meng L, et al. 2018 Adv. Opt. Mater. 6 1800077Google Scholar

    [87]

    Weisse J M, Kim D R, Lee C H, Zheng X 2011 Nano Lett. 11 1300Google Scholar

    [88]

    Mulazimoglu E, Coskun S, Gunoven M, Butun B, Ozbay E, Turan R, Unalan H E 2013 Appl. Phys. Lett. 103 083114Google Scholar

    [89]

    Xu Y, Shen H, Yue Z, Wang S, Zhao Q, Wang Z 2022 Surf. Interfaces 33 102288Google Scholar

    [90]

    Chee K W A, Ghosh B K, Saad I, Hong Y, Xia Q H, Gao P, Ye J, Ding Z J 2022 Nano Energy 95 106899Google Scholar

    [91]

    Dan Y, Seo K, Takei K, Meza J H, Javey A, Crozier K B 2011 Nano Lett. 11 2527Google Scholar

    [92]

    Yan J, Ge K, Li H, Yang X, Chen J, Wan L, Guo J, Li F, Xu Y, Song D, Flavel B S, Chen J 2021 Nanoscale 13 11439Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [3] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [4] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [5] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [6] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [7] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [8] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [9] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [11] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [12] 张玮祎, 胡明, 刘星, 李娜, 闫文君. 硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究. 物理学报, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [13] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [14] 刘琳, 王永田. 光照对HF/Fe(NO3)3溶液中制备硅纳米线的作用研究. 物理学报, 2015, 64(14): 148201. doi: 10.7498/aps.64.148201
    [15] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [16] 梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌. 晶体硅太阳电池表面纳米线阵列减反射特性研究. 物理学报, 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [17] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [18] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [19] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [20] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
计量
  • 文章访问数:  4262
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2022-12-25
  • 上网日期:  2023-01-12
  • 刊出日期:  2023-03-20

/

返回文章
返回