搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚合物非富勒烯体系PM6:Y6的钙钛矿/有机集成太阳电池光伏性能优化

孟婧 高博文

引用本文:
Citation:

基于聚合物非富勒烯体系PM6:Y6的钙钛矿/有机集成太阳电池光伏性能优化

孟婧, 高博文

Photovoltaic performance optimization of integrated perovskite/organic solar cells based on PM6:Y6 polymer non-fullerene system

Meng Jing, Gao Bo-Wen
PDF
HTML
导出引用
  • 通过工艺创新和薄膜优化技术成功制备基于CH3NH3PbI3/PM6:Y6(BTP-4F)的钙钛矿/有机集成太阳电池(IPOSCs). 通过添加剂1-8二碘辛烷DIO的调控和热退火处理, 极大优化CH3NH3PbI3/PM6:Y6混合薄膜质量和获得层间欧姆接触. 与此同时, 近红外区有机层的空穴和电子迁移率为 8.3×10–3 cm2 /(V·s)和8.8×10–3 cm2/(V·s), 可以和可见区钙钛矿层的空穴和电子迁移率相匹配, 实现在微观通路上达到载流子运输平衡, 导致器件具有高短路电流密度Jsc和高填充因子FF. 另外, 通过优化聚合物非富勒烯体系PM6:Y6质量比例混合成膜, 使得薄膜中的非辐射复合位点密度和载流子复合明显减少, 使得电子和空穴的提取和传输更加高效, 能够提供更大的驱动力来改善载流子传输, 同时形成更宽的耗尽区来抑制载流子复合以提高器件的开路电压Voc. 优化的集成太阳能电池的短路电流密度提升到25.88 A/cm2, 开路电压Voc增加到1.18 V, 填充因子FF达到80%, 光响应扩宽到950 nm, 外量子效率在可见光区达到90%, 最佳能量转换效率高达24.42%, 这是目前报道的IPOSCs中的最高效率之一. 结果表明, 通过可见区材料和近红外区聚合物非富勒烯体系材料组合和器件结构优化来增强钙钛矿太阳电池对于近红外光的吸收, 从而提升IPOSCs性能是一种有效的手段和方法. 为将来开发高效率IPOSCs奠定了实验工艺和构建理论基础.
    Integrated perovskite/organic solar cells (IPOSCs) based on CH3NH3PbI3/PM6:Y6(BTP-4F) are successfully prepared through process innovation and thin film optimization technology. The quality of CH3NH3PbI3/PM6:Y6 mixed films is greatly optimized, and the interlayer ohmic contact is obtained by regulating the additive DIO and annealing treatment. At the same time, the mobility of holes and electrons in the organic layer in the near infrared region are, respectively, 8.3×10–3 cm2/(V·s) and 8.8×10–3 cm2/(V·s), which can match the mobility of holes and electrons in the visible perovskite layer, achieving the carrier transport balance in the microscopic pathway. The device has high short-circuit current density Jsc and high filling factor FF. In addition, by optimizing the mass ratio of polymer non-fullerene system PM6:Y6 to form a film, the density of non-radiation recombination sites and carrier recombination in the film are significantly reduced, making the extraction and transport of electrons and holes more efficient, and providing greater driving force to improve carrier transport. At the same time, a wider depletion region is formed to inhibit carrier recombination and increase the open-circuit voltage Voc. The short-circuit current density of the optimized integrated solar cell increases to 25.88 A/cm2, the open-circuit voltage Voc increases to 1.18 V, the filling factor FF reaches 80%, the optical response expands to 950 nm, the external quantum efficiency reaches 90% in the visible region, and the optimal energy conversion efficiency is as high as 24.42%. This is one of the highest efficiencies reported in IPOSCs. The results show that it is an effective method to enhance the near-infrared light absorption of perovskite solar cells and improve the performance of IPOSCs by combining the materials in visible region and the polymer non-fullerene system in near infrared region and optimizing the device structure. It lays a theoretical foundation for developing high efficiency IPOSCs in the future.
      通信作者: 孟婧, mmmjjjcg@163.com ; 高博文, gbwhappy@163.com
    • 基金项目: 山东省自然科学基金重点项目(批准号: ZR2020KF001)、山东省泰安市科技创新发展项目(批准号: 2021GX017)、泰山学院教育教学研究专项重点项目(批准号: JY-01-202101) 、泰山学院教学改革与研究项目(批准号: JG202122)和泰山学院横向科研项目(批准号: 2022HX222)资助的课题.
      Corresponding author: Meng Jing, mmmjjjcg@163.com ; Gao Bo-Wen, gbwhappy@163.com
    • Funds: Project supported by Key Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR2020KF001), the Science and Technology Innovation Development Project of Tai’an City of Shandong Province, China (Grant No. 2021GX017), the Special Key Project of Education and Teaching Research of Taishan University, China (Grant No. JY-01-202101), the Teaching Reform and Research Project of Taishan University, China (Grant No. JG202122), and the Horizontal Research Project of Taishan University, China (Grant No. 2022HX222).
    [1]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [2]

    Al-Ashouri A, Kohnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Marquez J A, Vilches A B M, Getautis V, Albrecht S 2020 Science 370 1300Google Scholar

    [3]

    Ono L K, Liu S Z, Qi Y B 2020 Angew. Chem. , Int. Edit. 59 6676Google Scholar

    [4]

    Jiang Q, Ni Z, Xu G, Lin Y, Rudd P N, Xue R, Li Y, Li Y, Gao Y, Huang J 2020 Adv. Mater. 32 2001581Google Scholar

    [5]

    Karlsson M, Yi Z, Reichert S, Luo X, Lin W, Zhang Z, Bao C, Friend R, Gao F 2021 Nat. Commun. 12 361Google Scholar

    [6]

    Dong Q S, Zhu C, Chen M, Jiang C, Guo J Y, Feng Y L, Zhou Y Y 2021 Nat. Commun. 12 9Google Scholar

    [7]

    Gao C, Yu H, Wang Y, Liu D, Wen T, Zhang L, Ge S, Yu J 2020 Anal. Chem. 92 6822Google Scholar

    [8]

    Li D Q, Geng F S, Hao T Y, Chen Z 2022 Nano Energy 96 107133Google Scholar

    [9]

    Gu B K, Du Y, Chen B, Zhao R, Lu H, Xu Q Y, Guo C X 2022 ACS Appl. Mater. Interfaces 14 11264Google Scholar

    [10]

    Yang X, Li B, Zhang X L, Li S Y 2023 Adv. Mater. DOI: 10.1002/adma.202301604

    [11]

    Lin X F, Cheng P P, Zhang Y W, Tan W Y, Yu D S, Yi G B, Min Y G 2020 Sol. Energy 206 793Google Scholar

    [12]

    Lin X F, Wang Y Y, Wu J Y, Tang Z L, Lin W J, Nian L, Yi G B 2021 ACS Appl. Energy Mater. 4 5905Google Scholar

    [13]

    Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H 2020 Sci. China:Chem. 63 325Google Scholar

    [14]

    Umeyama T, Igarashi K, Sasada D, Tamai Y, Ishida K, Koganezawa T, Ohtani S, Tanaka K, Ohkita H, Imahori H 2020 Chem. Sci. 11 3250Google Scholar

    [15]

    Umeyama T, Igarashi K, Sasada D, Ishida K, Tanaka K, Imahori H 2020 ACS Appl. Mater. Interfaces 12 39236Google Scholar

  • 图 1  聚合物非富勒烯体系PM6:Y6 (BTP-4F)分子结构式 (a) PM6; (b) Y6

    Fig. 1.  Molecular structure formula for polymer non-fullerene system PM6:Y6 (BTP-4F): (a) PM6; (b) Y6.

    图 2  聚合物非富勒烯体系PM6:Y6 (BTP-4F)吸收光谱 (a) PM6和Y6纯薄膜; (b) PM6:Y6混合薄膜

    Fig. 2.  Absorption spectra of PM6:Y6 (BTP-4F) in polymer non-fullerene system: (a) PM6 and Y6 pure films; (b) PM6:Y6 mixed films.

    图 3  IPOSCs的器件结构与能级搭配图 (a)器件结构; (b)能级排列

    Fig. 3.  Device structure and energy level collocation diagram of IPOSCs: (a) Device structure; (b) energy level alignment.

    图 4  质量比不同的IPOSCs PM6:Y6薄膜的AFM和SEM测试 (a)—(c) AFM; (d)—(f) SEM

    Fig. 4.  AFM images and SEM images for PM6:Y6 thin films with different mass ratios in IPOSCs: (a)–(c) AFM; (d)–(f) SEM.

    图 5  不同退火温度下IPOSCs CH3NH3PbI3薄膜的AFM和SEM测试 (a)—(c) AFM; (d)—(f) SEM

    Fig. 5.  AFM images and SEM images of CH3NH3PbI3 films of IPOSCs at different annealing temperatures: (a)–(c) AFM; (d)–(f) SEM.

    图 6  纯钙钛矿太阳电池、有机光伏电池和IPOSCs的光伏性能、外量子效率、载流子以及阻抗测试 (a)纯钙钛矿太阳电池光伏性能J-V曲线; (b) OSC光伏性能J-V曲线; (c) IPOSCs光伏性能J-V曲线; (d) EQE曲线和积分电流曲线; (e)空穴迁移率; (f)电化学阻抗谱

    Fig. 6.  Photovoltaic performance, external quantum efficiency, carrier and impedance tests of pure perovskite solar cells, organic photovoltaic cells and IPOSCs: (a) J-V curves of photovoltaic performance of pure perovskite solar cells; (b) J-V curves of photovoltaic performance of organic solar cells; (c) performance J-V curves of IPOSCs; (d) EQE curves and integral current curves; (e) hole mobility; (f) electrochemical impedance spectroscopy.

    图 7  IPOSCs光伏性能可再现性统计和稳定性测试 (a) 可再现性统计; (b) 稳定性测试

    Fig. 7.  Repeatability statistics and stability test of photovoltaic performance of IPOSCs: (a) Repeatability statistics; (b) stability test.

    表 1  IPOSCs光伏性能参数

    Table 1.  Photovoltaic performance parameters of IPOSCs.

    CH3NH3PbI3/
    PM6:Y6
    Voc/VJsc/(mA·cm–2)FF/%PCE/%
    1∶11.1725.027923.12
    1∶1.51.1825.888024.42
    1∶21.1624.017821.70
    下载: 导出CSV
  • [1]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [2]

    Al-Ashouri A, Kohnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Marquez J A, Vilches A B M, Getautis V, Albrecht S 2020 Science 370 1300Google Scholar

    [3]

    Ono L K, Liu S Z, Qi Y B 2020 Angew. Chem. , Int. Edit. 59 6676Google Scholar

    [4]

    Jiang Q, Ni Z, Xu G, Lin Y, Rudd P N, Xue R, Li Y, Li Y, Gao Y, Huang J 2020 Adv. Mater. 32 2001581Google Scholar

    [5]

    Karlsson M, Yi Z, Reichert S, Luo X, Lin W, Zhang Z, Bao C, Friend R, Gao F 2021 Nat. Commun. 12 361Google Scholar

    [6]

    Dong Q S, Zhu C, Chen M, Jiang C, Guo J Y, Feng Y L, Zhou Y Y 2021 Nat. Commun. 12 9Google Scholar

    [7]

    Gao C, Yu H, Wang Y, Liu D, Wen T, Zhang L, Ge S, Yu J 2020 Anal. Chem. 92 6822Google Scholar

    [8]

    Li D Q, Geng F S, Hao T Y, Chen Z 2022 Nano Energy 96 107133Google Scholar

    [9]

    Gu B K, Du Y, Chen B, Zhao R, Lu H, Xu Q Y, Guo C X 2022 ACS Appl. Mater. Interfaces 14 11264Google Scholar

    [10]

    Yang X, Li B, Zhang X L, Li S Y 2023 Adv. Mater. DOI: 10.1002/adma.202301604

    [11]

    Lin X F, Cheng P P, Zhang Y W, Tan W Y, Yu D S, Yi G B, Min Y G 2020 Sol. Energy 206 793Google Scholar

    [12]

    Lin X F, Wang Y Y, Wu J Y, Tang Z L, Lin W J, Nian L, Yi G B 2021 ACS Appl. Energy Mater. 4 5905Google Scholar

    [13]

    Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H 2020 Sci. China:Chem. 63 325Google Scholar

    [14]

    Umeyama T, Igarashi K, Sasada D, Tamai Y, Ishida K, Koganezawa T, Ohtani S, Tanaka K, Ohkita H, Imahori H 2020 Chem. Sci. 11 3250Google Scholar

    [15]

    Umeyama T, Igarashi K, Sasada D, Ishida K, Tanaka K, Imahori H 2020 ACS Appl. Mater. Interfaces 12 39236Google Scholar

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [4] 孟婧, 高博文. 新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究. 物理学报, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [5] 时凯居, 李睿, 李长富, 王成新, 徐现刚, 冀子武. 荧光法测定半导体禁带宽度. 物理学报, 2022, 71(6): 067803. doi: 10.7498/aps.71.20211894
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [8] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮. 载流子复合及能量无序对聚合物太阳电池开路电压的影响. 物理学报, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [9] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池. 物理学报, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [10] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [11] 赵婉莹, 库治良, 金钻明, 刘伟民, 林贤, 戴晔, 阎晓娜, 马国宏, 姚建铨. 有机金属卤化物钙钛矿薄膜中的光诱导载流子动力学和动态带重整效应. 物理学报, 2019, 68(1): 018401. doi: 10.7498/aps.68.20181854
    [12] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [13] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [14] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [15] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [16] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [17] 闫悦, 赵谡玲, 徐征, 龚伟, 王大伟. 多环类苝四甲酸二酐插入层对ZnO纳米棒和聚合物复合太阳电池性能的影响. 物理学报, 2011, 60(8): 088803. doi: 10.7498/aps.60.088803
    [18] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响. 物理学报, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [19] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [20] 王志超, 滕敏康, 张淑仪, 葛网大, 邱树业. a-Si:H和a-SiNx:H薄膜中的缺陷以及载流子的非辐射复合. 物理学报, 1988, 37(8): 1291-1297. doi: 10.7498/aps.37.1291
计量
  • 文章访问数:  4589
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-04-04
  • 上网日期:  2023-04-14
  • 刊出日期:  2023-06-20

/

返回文章
返回