搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究

段秀铭 易志军

引用本文:
Citation:

介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究

段秀铭, 易志军

Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton

Duan Xiu-Ming, Yi Zhi-Jun
PDF
HTML
导出引用
  • 采用基于格林函数的GW方法计算发现: 孤立二维单层硒化铟(InSe)和碲化铟(InTe)具有吸收可见光的理想带隙, 高的电子迁移率以及适合光解水的电子能带结构, 电子自旋轨道耦合(SOC)效应使单层InTe从间接带隙半导体转变为直接带隙半导体. 在准粒子能级计算的基础之上, 通过求解Bethe-Salpeter方程 (BSE)发现, 孤立单层InSe和InTe的激子结合能远大于常温下激子的自发解离能. 另一方面, 实际应用的二维半导体为了维持其力学稳定性, 大都需要依附在衬底上, 另外, 不同实验室样品自身原子层厚度也各异, 这些因素必然改变二维半导体的介电环境. 进一步的计算发现, 二维InSe和InTe的激子结合能随自身原子层厚度以及衬底厚度的变大而减小, 这说明可以通过调控二维半导体自身原子层以及衬底厚度的方式实现对激子结合能的精确调控, 本文结果能够为将来精确调控二维InSe和InTe的激子结合能大小提供重要的理论依据.
    The calculations using GW method based on Green’s function show that two-dimensional monolayer InSe and InTe have desired electronic band gaps for absorbing visible light, high electron mobilities, and suitable electronic band structures for water splitting, and that the spin orbit coupling (SOC) leads to an indirect-to -direct band gap transition for monolayer InTe. On the basis of quasi-particle energy levels, the calculations via solving Bethe-Salpter equation (BSE) show that the exciton binding energy of isolated monolayer InSe and InTe are much higher than that of the dissociation energy of exciton at room temperature. On the other hand, two-dimensional semiconductors in laboratory are often supported by substrates for mechanical stability, and the atomic thickness values of two-dimensional semiconductors are also various in different experiments. These factors will change the dielectric environments of two-dimensional semiconductor, and the further calculations show that the exciton binding energy of InSe and InTe decrease with the increase of the thickness of InSe and InTe and also the thickness of their substrates, also revealing that the exciton binding energy can be accurately controlled by engineering the thickness of two-dimensional semiconductors and the substrates. Our results provide important theoretical basis for accurately controlling the binding energy of two-dimensional InSe and InTe.
      通信作者: 易志军, 5216@cumt.edu.cn
    • 基金项目: 中央高校基本业务费(批准号: 2019XKQYMS15)资助的课题.
      Corresponding author: Yi Zhi-Jun, 5216@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2019XKQYMS15).
    [1]

    Dai M, Gao C, Nie Q, Wang Q J, Lin, Y, F, Chu J, Li W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [2]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [3]

    Li Z Y, Cheng H Y, Kung S H, Yao H C, Inbaraj C R P, Sankar R, Ou M N, Chen Y F, Lee C C, Lin K H 2023 Nanomaterials 13 750Google Scholar

    [4]

    Feng W, Zhou X, Tian W Q, Zheng W, Hu P 2015 Phys. Chem. Chem. Phys. 17 3653Google Scholar

    [5]

    Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdovin E E, Marsden A J, Wilson N R, Patane A 2015 Adv. Mater. 27 3760Google Scholar

    [6]

    张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 物理学报 69 157302Google Scholar

    Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar

    [7]

    Mudd G W, Svatek S A, Ren T, Patanè A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar

    [8]

    Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J., Bertran F, Fèvre P L, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E, Ouerghi A 2019 Phys. Rev. Mater. 3 034004Google Scholar

    [9]

    Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D, Ajayan P M 2014 ACS Nano 8 1263Google Scholar

    [10]

    Zhou J, Shi J, Zeng Q, Chen Y, Niu L, Liu F, Yu T, Suenaga Kazu, Liu X, Lin J, Liu Z 2018 2D Mater. 5 025019Google Scholar

    [11]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F, Chen Y T, Gao Xuan P A 2015 Nano Lett. 156 3815Google Scholar

    [12]

    Lauth J, Gorris F E S, Khoshkhoo M S, Chassé T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M, Weller H 2016 Chem. Mater. 28 1728Google Scholar

    [13]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [14]

    Pal S, Bose D N 1996 Solid State Commun. 97 725Google Scholar

    [15]

    Zólyomi V, Drummond N D, Falko V I 2014 Phys. Rev. B 89 205416Google Scholar

    [16]

    Jain M, Chelikowsky J R, Louie S, G, 2011 Phys. Rev. Lett. 107 216806Google Scholar

    [17]

    Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y 2018 Nanoscale 10 15624Google Scholar

    [18]

    Yi Z, Wu M, Pang Y, Jia R, Xu R R 2021 Appl. Surf. Sci. 567 150842Google Scholar

    [19]

    Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin Junhao, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T, Bolotin K I 2014 Sci. Rep. 4 6608Google Scholar

    [20]

    Thygesen K S 2017 2D Mater. 4 022004Google Scholar

    [21]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light-Sci. Appl. 10 72Google Scholar

    [22]

    Qiu, D. Y. Jornada F da H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar

    [23]

    Komsa, H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201(RGoogle Scholar

    [24]

    Shi H L, Pan H, Zhang Y W, Yakobson B I 2013 Phys. Rev. B 87 155304Google Scholar

    [25]

    Qiu D Y, Felipe H da J, Louie, S G 2017 Nano Lett. 17 4706Google Scholar

    [26]

    Raja A, Chaves A, Yu J, Arefe G, Hill Heather M, Rigosi Albert F, Berkelbach Timothy C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus Louis E, Heinz Tony F, Reichman David R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [27]

    Ugeda Miguel M, Bradley Aaron J, Shi S F, Jornada Felipe H da, Zhang Y, Qiu Diana Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie Steven G, Crommie Michael F 2014 Nat. Mater. 13 1091Google Scholar

    [28]

    Enkovaara J, Rostgaard C, Mortensen J J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H A, Kristoffersen H H, Kuisma M, Larsen A H, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P G, Ojanen J, Olsen T, Petzold V, Romero N A, Stausholm-Møller J, Strange M, Tritsaris G A, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G K H, Nieminen R M, Nørskov J K, Puska M, Rantala T T, Schiøtz J, Thygesen K S, Jacobsen K W 2010 J. Phys. Condens. Mater. 22 253202Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Babaie-Kafaki S, Aminifard Z 2019 Numer. Algorithms 82 1345Google Scholar

    [32]

    Hüser F, Olsen T, Thygesen K S 2013 Phys. Rev. B 87 235132Google Scholar

    [33]

    Yan J, Mortensen J J, Jacobsen K W, Thygesen K S 2011 Phys. Rev. B 83 245122Google Scholar

    [34]

    Yi Z, Ma Y, Zheng Y, Duan Y, Li H 2019 Adv. Mater. Interfaces 6 1801175Google Scholar

    [35]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar

    [36]

    Smail-Beigi S 2006 Phys. Rev. B 73 233103Google Scholar

    [37]

    Rasmussen F A, Schmidt P S, Winther K T, Thygesen K S 2016 Phys. Rev. B 94 155406Google Scholar

    [38]

    Olsen T 2016 Phys. Rev. B 94 235106Google Scholar

    [39]

    Tiago M L, Ismail-Beigi S, Louie S G 2004 Phys. Rev. B 69 125212Google Scholar

    [40]

    Klimeš J, Kaltak M, Kresse G 2014 Phys. Rev. B 90 075125Google Scholar

    [41]

    Haastrup S, Strange Mikke, Pandey M, Deilmann T, Schmidt Per S, Hinsche Nicki F, Gjerding Morten N, Torelli D, Larsen Peter M, Riis-Jensen Anders C 2018 2D Mater. 5 042002Google Scholar

    [42]

    Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar

    [43]

    隋国民, 严桂俊, 杨光, 张宝, 冯亚青 2022 物理学报 71 208801Google Scholar

    Sui G M, Yan G J, Yang G, Zhang B, Feng Y Q 2022 Acta Phys. Sin. 71 208801Google Scholar

    [44]

    Andersen K, Latini S, Thygesen K S 2015 Nano Lett. 15 4616Google Scholar

    [45]

    Pandey T, Parker David S, Lindsay L 2017 Nanotechnology 28 455706Google Scholar

    [46]

    Pang Y, Wu M, Zhang J, Yi Z 2021 J. Phys. Chem. C 125 3027Google Scholar

  • 图 1  (a) 孤立单层InX (X = Se/Te) 几何结构; (b) InX原胞的第一布里渊区以及高对称位置K点分布

    Fig. 1.  (a) Geometric structure of isolated monolayer InX (X = Se/Te); (b) the first Brillouin zone and high-symmetry K point distributions of primitive unit cell for InX.

    图 2  孤立单层InSe (a), (b) 和InTe (c), (d) 的能带结构(左)和原子投影分态密度(右)

    Fig. 2.  The band structures (left) and atom projected density of states (right) of isolated monolayer InSe (a), (b) and InTe (c), (d).

    图 3  (a) 基于PBE和GW方法得到的孤立单层InSe和InTe带边能级排列示意图; (b) 准粒子能级, 光学带隙以及激子结合能示意图

    Fig. 3.  (a) The band edge alignments of isolated monolayer InSe and InTe based on PBE and GW method; (b) quasi-particle energy level, optical band gap and schematic diagram of exciton binding energy.

    图 4  单层InSe (a), (b) 和 单层InTe (c), (d)分别沿xz方向的光学吸收谱

    Fig. 4.  The absorption spectrum of monolayer InSe (a), (b) and monolayer InTe (c), (d) along x and z polarization directions.

    图 5  InSe (a)和InTe (b)的激子结合能随自身原子层数量的变化关系

    Fig. 5.  The relationship diagrams of exciton binding energies of InSe and InTe with the variation of their self-atomic layer numbers.

    图 6  单层InSe/InTe和环境之间的结构示意图

    Fig. 6.  The structural diagram between monolayer InSe/InTe and environment.

    图 7  单层InSe (a) 和InTe (b) 的激子结合能随h-BN原子层数量的变化关系

    Fig. 7.  The relationship diagrams of exciton binding energies of monolayer InSe and InTe with the variation of number of h-BN atomic layers.

    图 B1  InSe和InTe沿a (图中方向1)和b (图中方向2)两个方向导带边和价带边抛物线拟合

    Fig. B1.  Fitted results of conduction band edge and valence band edge of InSe and InTe along both a (direction 1 in the figure) and b (direction 2 in the figure).

    表 1  InSe和InTe导带和价带带边电子和空穴的有效质量

    Table 1.  The effective masses of electrons and holes of conduction and valence band edges for InSe and InTe.

    n (InSe/InTe)15102030
    Eb (InSe)/eV0.4190.3500.3420.3380.337
    Eb (InTe)/eV0.2940.2440.2370.2350.234
    下载: 导出CSV

    表 2  不同原子层厚度InSe以及InTe放置在50个原子层厚度h-BN衬底上时的激子结合能

    Table 2.  The exciton binding energies for different atomic thicknesses of InSe and InTe on h-BN substrate with 50 atomic layer thickness.

    n (InSe/InTe)15102030
    Eb (InSe)/eV0.4190.3500.3420.3380.337
    Eb (InTe)/eV0.2940.2440.2370.2350.234
    下载: 导出CSV
  • [1]

    Dai M, Gao C, Nie Q, Wang Q J, Lin, Y, F, Chu J, Li W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [2]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [3]

    Li Z Y, Cheng H Y, Kung S H, Yao H C, Inbaraj C R P, Sankar R, Ou M N, Chen Y F, Lee C C, Lin K H 2023 Nanomaterials 13 750Google Scholar

    [4]

    Feng W, Zhou X, Tian W Q, Zheng W, Hu P 2015 Phys. Chem. Chem. Phys. 17 3653Google Scholar

    [5]

    Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdovin E E, Marsden A J, Wilson N R, Patane A 2015 Adv. Mater. 27 3760Google Scholar

    [6]

    张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 物理学报 69 157302Google Scholar

    Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar

    [7]

    Mudd G W, Svatek S A, Ren T, Patanè A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar

    [8]

    Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J., Bertran F, Fèvre P L, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E, Ouerghi A 2019 Phys. Rev. Mater. 3 034004Google Scholar

    [9]

    Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D, Ajayan P M 2014 ACS Nano 8 1263Google Scholar

    [10]

    Zhou J, Shi J, Zeng Q, Chen Y, Niu L, Liu F, Yu T, Suenaga Kazu, Liu X, Lin J, Liu Z 2018 2D Mater. 5 025019Google Scholar

    [11]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F, Chen Y T, Gao Xuan P A 2015 Nano Lett. 156 3815Google Scholar

    [12]

    Lauth J, Gorris F E S, Khoshkhoo M S, Chassé T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M, Weller H 2016 Chem. Mater. 28 1728Google Scholar

    [13]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [14]

    Pal S, Bose D N 1996 Solid State Commun. 97 725Google Scholar

    [15]

    Zólyomi V, Drummond N D, Falko V I 2014 Phys. Rev. B 89 205416Google Scholar

    [16]

    Jain M, Chelikowsky J R, Louie S, G, 2011 Phys. Rev. Lett. 107 216806Google Scholar

    [17]

    Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y 2018 Nanoscale 10 15624Google Scholar

    [18]

    Yi Z, Wu M, Pang Y, Jia R, Xu R R 2021 Appl. Surf. Sci. 567 150842Google Scholar

    [19]

    Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin Junhao, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T, Bolotin K I 2014 Sci. Rep. 4 6608Google Scholar

    [20]

    Thygesen K S 2017 2D Mater. 4 022004Google Scholar

    [21]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light-Sci. Appl. 10 72Google Scholar

    [22]

    Qiu, D. Y. Jornada F da H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar

    [23]

    Komsa, H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201(RGoogle Scholar

    [24]

    Shi H L, Pan H, Zhang Y W, Yakobson B I 2013 Phys. Rev. B 87 155304Google Scholar

    [25]

    Qiu D Y, Felipe H da J, Louie, S G 2017 Nano Lett. 17 4706Google Scholar

    [26]

    Raja A, Chaves A, Yu J, Arefe G, Hill Heather M, Rigosi Albert F, Berkelbach Timothy C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus Louis E, Heinz Tony F, Reichman David R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [27]

    Ugeda Miguel M, Bradley Aaron J, Shi S F, Jornada Felipe H da, Zhang Y, Qiu Diana Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie Steven G, Crommie Michael F 2014 Nat. Mater. 13 1091Google Scholar

    [28]

    Enkovaara J, Rostgaard C, Mortensen J J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H A, Kristoffersen H H, Kuisma M, Larsen A H, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P G, Ojanen J, Olsen T, Petzold V, Romero N A, Stausholm-Møller J, Strange M, Tritsaris G A, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G K H, Nieminen R M, Nørskov J K, Puska M, Rantala T T, Schiøtz J, Thygesen K S, Jacobsen K W 2010 J. Phys. Condens. Mater. 22 253202Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Babaie-Kafaki S, Aminifard Z 2019 Numer. Algorithms 82 1345Google Scholar

    [32]

    Hüser F, Olsen T, Thygesen K S 2013 Phys. Rev. B 87 235132Google Scholar

    [33]

    Yan J, Mortensen J J, Jacobsen K W, Thygesen K S 2011 Phys. Rev. B 83 245122Google Scholar

    [34]

    Yi Z, Ma Y, Zheng Y, Duan Y, Li H 2019 Adv. Mater. Interfaces 6 1801175Google Scholar

    [35]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar

    [36]

    Smail-Beigi S 2006 Phys. Rev. B 73 233103Google Scholar

    [37]

    Rasmussen F A, Schmidt P S, Winther K T, Thygesen K S 2016 Phys. Rev. B 94 155406Google Scholar

    [38]

    Olsen T 2016 Phys. Rev. B 94 235106Google Scholar

    [39]

    Tiago M L, Ismail-Beigi S, Louie S G 2004 Phys. Rev. B 69 125212Google Scholar

    [40]

    Klimeš J, Kaltak M, Kresse G 2014 Phys. Rev. B 90 075125Google Scholar

    [41]

    Haastrup S, Strange Mikke, Pandey M, Deilmann T, Schmidt Per S, Hinsche Nicki F, Gjerding Morten N, Torelli D, Larsen Peter M, Riis-Jensen Anders C 2018 2D Mater. 5 042002Google Scholar

    [42]

    Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar

    [43]

    隋国民, 严桂俊, 杨光, 张宝, 冯亚青 2022 物理学报 71 208801Google Scholar

    Sui G M, Yan G J, Yang G, Zhang B, Feng Y Q 2022 Acta Phys. Sin. 71 208801Google Scholar

    [44]

    Andersen K, Latini S, Thygesen K S 2015 Nano Lett. 15 4616Google Scholar

    [45]

    Pandey T, Parker David S, Lindsay L 2017 Nanotechnology 28 455706Google Scholar

    [46]

    Pang Y, Wu M, Zhang J, Yi Z 2021 J. Phys. Chem. C 125 3027Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [3] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [4] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [5] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [6] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性. 物理学报, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用. 物理学报, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [9] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [10] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211516
    [11] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展. 物理学报, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [12] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [13] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光. 物理学报, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [14] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 赵敏福. 电子垂直入射电离氦原子碰撞机理的理论研究. 物理学报, 2017, 66(7): 073401. doi: 10.7498/aps.66.073401
    [15] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响. 物理学报, 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [16] 杨欢, 张穗萌, 吴兴举. 大能量损失几何条件下末态屏蔽效应和交换效应的理论研究. 物理学报, 2009, 58(10): 6938-6945. doi: 10.7498/aps.58.6938
    [17] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [18] 宋招权, 徐 慧, 李燕峰, 刘小良. 非对角无序和维数效应对低维无序系统电子结构的影响. 物理学报, 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
    [19] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [20] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程. 物理学报, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
计量
  • 文章访问数:  4612
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-05
  • 修回日期:  2023-05-05
  • 上网日期:  2023-05-16
  • 刊出日期:  2023-07-20

/

返回文章
返回