搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究

邢伟 李胜周 孙金锋 曹旭 朱遵略 李文涛 李悦毅 白春旭

引用本文:
Citation:

AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究

邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭

Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule

Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu
PDF
HTML
导出引用
  • 在修正了各种误差(自旋-轨道耦合效应、标量相对论效应、核价相关效应及基组截断)的基础上, 本文利用内收缩的多参考组态相互作用(icMRCI) +Q方法计算了AlH分子10个Λ-S态和26个Ω态的势能曲线. 利用包含自旋-轨道耦合效应的icMRCI/AV6Z*理论计算了$ {\rm X}{}^1\Sigma _{{0^ + }}^ + $, $ {\rm a^3}{\Pi _{{0^ + }}} $, $ {\rm a^3}{\Pi _1} $, $ {\rm a^3}{\Pi _2} $$ {\rm A^1}{\Pi _1} $态之间的跃迁偶极矩. 计算得到的光谱常数和跃迁数据与现有的实验值符合很好. 研究发现:1) A1Π1${\text{X}}^{1}{{\Sigma }}_{{{0}^ + }}^ +$(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)和(1, 5)带Q(J'')支的跃迁比较强, 随着J''的增大, Δυ = 0带的爱因斯坦A系数和振动分支比值逐渐减小, 加权的吸收振子强度值逐渐增大; Δυ ≠ 0带的爱因斯坦A系数振动分支比和加权的吸收振子强度值逐渐增大; 2) A1Π1υ' = 0和1能级的辐射寿命随着J'的增大而缓慢增大; 3) AlH分子的A1Π1 (υ' = 0和1, J' = 1, +) →$ {\text{X}}{}^1\Sigma _{{0^ + }}^ + $(υ'' = 0—3, J'' = 1, –)跃迁满足双原子分子激光冷却的准则, 即对角化分布的振动分支比, A1Π1(υ' = 0和1, J' = 1, +)态极短的辐射寿命, ${{\text{a}}^{3}}{{{\Pi }}_{{{0}^ + }}}$, a3Π1和a3Π2中间电子态不会对激光冷却产生干扰. 因此, 基于A1Π1(υ'= 0和1, J' = 1, +) ↔ $ {\rm X}{}^1\Sigma _{{0^ + }}^ + $(υ''= 0—3, J'' = 1, –)循环跃迁, 本文提出了激光冷却AlH分子的可行性方案, 冷却时使用四束可见光波段的泵浦激光就可以散射2.541 × 104个光子, 这足以冷却到超冷温度, 并且主跃迁的多普勒温度和回弹温度为μK量级.
    On the basis of correcting various errors caused by spin-orbit coupling effects, scalar relativity effects, core-valence correlation effects and basis set truncation, the potential energy curves of 10 Λ-S states and 26 Ω states of AlH molecule are calculated by using icMRCI + Q method. The transition dipole moments of 6 pairs of transitions between the ${\rm X}{}^1\Sigma _{{0^ + }}^ + $, $ {\rm a^3}{\Pi _{{0^ + }}} $, ${\rm a^3}{\Pi _1} $, ${\rm a^3}{\Pi _2} $, and ${\rm A^1}{\Pi _1} $ states are calculated by using the icMRCI/AV6Z* theory with the consideration of spin-orbit coupling effects. The spectral and transition data obtained here for AlH molecule are in very good agreement with the available experimental measurements. The findings are below. 1) The transition intensities are relatively strong of the Q(J″) branches for the (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4) and (1, 5) bands of the A1Π1${\rm X}{}^1\Sigma _{{0^ + }}^ + $ transition, with the increase of J″; the Einstein A coefficients and vibrational branching ratio gradually decrease, and the weighted absorption oscillator strength gradually increases of Δυ = 0 band, the Einstein A coefficient, vibrational branching ratio, and weighted absorption oscillator strength gradually increase for the Δυ ≠ 0 bands. 2) The radiation lifetimes of A1Π1(υ' = 0, 1) increases slowly as the J' increases. 3) The A1Π1(υ' = 0 and 1, J' = 1, +) →${\rm X}{}^1\Sigma _{{0^ + }}^ + $(υ'' = 0–3, J'′ = 1, –) transition of AlH molecule satisfies the criteria for laser cooling of diatomic molecules, that is, the vibrational branching ratio of the highly diagonal distribution, the extremely short radiation lifetimes of the A1Π1(υ' = 0 and 1, J' = 1, +) states, and the intermediate electronic states $ {\rm a^3}{\Pi _{{0^ + }}} $, a3Π1, and a3Π2 do not interfere with laser cooling. Therefore, based on the cyclic transition A1Π1(υ' = 0 and 1, J' = 1, +) ↔ ${\rm X}{}^1\Sigma _{{0^ + }}^ + $(υ'′ = 0–3, J'' = 1, –), we propose a feasible scheme for laser cooling of AlH molecule. When cooled, 2.541 × 104 photons can be scattered by four pump lasers used in the visible range, which are enough to cool AlH to the ultra-cold temperature, and the Doppler temperature and recoil temperature of the main transition are on the order of μK.
      通信作者: 邢伟, wei19820403@163.com
    • 基金项目: 国家自然科学基金(批准号: 61275132, 11274097, 12074328)、河南省自然科学基金 (批准号: 212300410233)、河南省高等学校重点科研项目(批准号: 21A140023 )和信阳师范学院南湖学者奖励计划青年项目资助的课题.
      Corresponding author: Xing Wei, wei19820403@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097, 12074328), the Natural Science Foundation of Henan province, China (Grant No. 212300410233), the Natural Science Foundation of the Henan Higher Education Institutions of China (Grant No. 21A140023), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
    [1]

    Herbig G H 1956 Publ. Astron. Soc. Pac. 68 204Google Scholar

    [2]

    Kamiński T, Wong K T, Schmidt M R, et al. 2016 Astron. Astrophys. 592 A42Google Scholar

    [3]

    Pavlenko Y V, Tennyson J, Yurchenko S N, et al. 2022 Mon. Not. R. Astron. Soc. 516 5655Google Scholar

    [4]

    Karthikeyan B, Rajamanickam N, Bagare S P 2010 Sol. Phys. 264 279Google Scholar

    [5]

    Halfen D T, Ziurys L M 2014 Astrophys. J. 791 65Google Scholar

    [6]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018Google Scholar

    [7]

    Basquin O H 1901 Astrophys. J. 14 1Google Scholar

    [8]

    Deutsch J L, Neil W S, Ramsay D A 1987 J. Mol. Spectrosc. 125 115Google Scholar

    [9]

    White J B, Dulick M, Bernath P F 1993 J. Chem. Phys. 99 8371Google Scholar

    [10]

    Ito F, Nakanaga T, Takeo H, Jones H 1994 J. Mol. Spectrosc. 164 379Google Scholar

    [11]

    Rice J K, Pasternack L, Nelson H H 1992 Chem. Phys. Lett. 189 43Google Scholar

    [12]

    Ram R S, Bernath P F 1996 Appl. Optics. 35 2879Google Scholar

    [13]

    Baltayan P, Nedelec O 1979 J. Chem. Phys. 70 2399Google Scholar

    [14]

    Szajna W, Zachwieja M 2009 Eur. Phys. J. D 55 549Google Scholar

    [15]

    Szajna W, Zachwieja M, Hakalla R, Kępa R 2011 Acta Phys. Pol. A. 120 417Google Scholar

    [16]

    Szajna W, Zachwieja M 2010 J. Mol. Spectrosc. 260 130Google Scholar

    [17]

    Szajna W, Kȩpa R, Para A, Piotrowska I, Ryzner S, Field R W, Heays A N, Hakalla R 2023 J. Mol. Spectrosc. 391 111735Google Scholar

    [18]

    Zhang Y, Stuke M 1988 Chem. Phys. Lett. 149 310Google Scholar

    [19]

    Zhu Y F, Shehadeh R, Grant E R 1992 J. Chem. Phys. 97 883Google Scholar

    [20]

    Tao C, Tan X F, Dagdigian P J, Alexander M H 2003 J. Chem. Phys. 118 10477Google Scholar

    [21]

    Szajna W, Hakalla R, Kolek P, Zachwieja M 2017 J. Quant. Spectrosc. Ra. 187 167Google Scholar

    [22]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 99 1914Google Scholar

    [23]

    Shi D H, Liu H, Zhang X N, Sun J F, Liu Y F, Zhu Z L 2011 Int. J. Quantum. Chem. 111 554Google Scholar

    [24]

    Zhao S T, Li J, Li R, Yin S, Guo H J 2021 Chin. Phys. Lett. 38 043101Google Scholar

    [25]

    Qin Z, Bai T R, Liu L H 2021 Astrophys. J. 917 87Google Scholar

    [26]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928Google Scholar

    [27]

    Brown A, Wasylishen R E 2013 J. Mol. Spectrosc. 292 8Google Scholar

    [28]

    Hirata S, Yanai T, De Jong W A, Nakajima T, Hirao K 2004 J. Chem. Phys. 120 3297Google Scholar

    [29]

    Karton A, Martin J M L 2010 J. Chem. Phys. 133 144102Google Scholar

    [30]

    Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3Google Scholar

    [31]

    Koput J 2019 J. Comput. Chem. 40 2522Google Scholar

    [32]

    Yurchenko S N, Williams H, Leyland P C, Lodi L, Tennyson J 2018 Mon. Not. R. Astron. Soc. 479 1401Google Scholar

    [33]

    Sindhan R, Sriramachandran P, Shanmugavel R, Ramaswamy S 2023 New. Astron. 99 101939Google Scholar

    [34]

    Di Rosa M D 2004 Eur. Phys. J. D. 31 395Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J. & NIST ASD Team 2022 NIST Atomic Spectra Database (version 5.10) [2023-4-13]

    [36]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M 2023 MOLPRO (version 2010.1) [2023-4-13]

    [37]

    侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰 2022 物理学报 71 213101Google Scholar

    Hou Q Y, Guan H Y, Huang Y L, Chen S L, Yang M, Wan M J 2022 Acta Phys. Sin. 71 213101Google Scholar

    [38]

    邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 物理学报 71 103101Google Scholar

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101Google Scholar

    [39]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [40]

    Dunning Jr T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [41]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48Google Scholar

    [42]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [43]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [44]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [45]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [46]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [47]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett 110 143001Google Scholar

  • 图 1  AlH分子10个Λ-S态的势能曲线

    Fig. 1.  Potential energy curves of 10 Λ-S states of the AlH molecule.

    图 2  AlH分子26个Ω态的势能曲线

    Fig. 2.  Potential energy curves of 26 Ω states of the AlH molecule.

    图 3  AlH 分子 6 对跃迁的跃迁偶极矩曲线

    Fig. 3.  Curves of the transition dipole moments versus internuclear separation of six-pair states of the AlH molecule.

    图 4  利用A1Π1(υ'= 0和1, J' = 1, +) ↔$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ''= 0—3, J'' = 1, –)跃迁进行激光冷却AlH分子的方案. 红色实线表示激光驱动A1Π1(υ' = 0和1, +)←$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—3, –)跃迁Q(1)支的激光波长(λυ'υ'')

    Fig. 4.  The proposed laser cooling scheme for the AlH using A1Π1 (υ'= 0 and 1, J' = 1, +) ↔$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ''= 0–3, J'' = 1, –) transition. The red solid line indicate the wavelength (λυ'υ'') at which the laser drives the Q(1) branch of the A1Π1 (υ' = 0 and 1, +) ←$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0–3, –) transition.

    图 5  A1Π1态的辐射寿命随转动量子数J'的分布

    Fig. 5.  Distributions of the radiative lifetime varying as the J' of the A1Π1 state.

    表 1  AlH分子前3个离解极限产生的10个Λ-S态的离解关系

    Table 1.  Dissociation relationships of the 10 Λ-S states generated from the first three dissociation asymptotes of the AlH molecule.

    离解极限Λ-S态能级/cm–1
    本文实验[35]理论[20]理论[24]理论[25]
    Al(3s23p 2Pu) + H(1s 2Sg)X1Σ+, a3Π, A1Π, 13Σ+00000
    Al(3s24s 2Sg) + H(1s 2Sg)C1Σ+, 23Σ+25217.3025291.73a)25082.402553325306.42
    Al(3s3p2 4Pg) + H(1s 2Sg)b3Σ, 15Σ, 23Π, 15Π28790.8029020.69b)28151.60
    a) E(Al, 3s24s 2Sg) = E(Al, 3s24s 2S1/2) – E(Al, 3s23p 2P3/2)/2;
    b) E(Al, 3s3p2 4Pg) = [E(Al, 3s3p2 4P1/2) +E(Al, 3s3p2 4P3/2) +E(Al, 3s3p2 4P5/2)]/3 –E(Al, 3s23p 2P3/2)/2.
    下载: 导出CSV

    表 2  AlH分子X1Σ+态的光谱常数

    Table 2.  Spectroscopic parameters of the X1Σ+ state of AlH molecule.

    来源Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102αe/cm–1De/eV
    icMRCI + Q/AV6 Z*a)00.165141667.6725.01196.3057015.70973.2353
    icMRCI + Q/56a)00.165101668.6025.03536.3087115.77993.2400
    ∆56a)0–0.000040.930.02340.003010.07020.0047
    icMRCI + Q/56+CVa)00.164211686.5523.85776.3524814.65273.1860
    ∆CVa)0–0.0008917.95–1.17760.04377–1.1272–0.054
    icMRCI + Q/56+SRa)00.165121665.8424.99796.3075315.75683.2365
    ∆SRa)00.00002–2.76–0.0374–0.00118–0.0231–0.0035
    icMRCI + Q/56 + CV + SRa)00.164231683.8623.82976.3518414.75843.1825
    ∆CV+SRa)0–0.0008715.26–1.20560.04313–1.0215–0.0575
    实验[8]00.164741682.4429.10606.393718.6853.16 ± 0.01b)
    实验[9]00.164541682.3829.05106.3937818.7053
    实验[10]01682.3729.04666.3937718.7044
    实验[14]01682.3729.05116.3937918.7056
    实验[15]00.164741682.3729.05116.3937918.7056
    实验[18]01682.5629.96.390718.58
    理论[6]00.16350
    理论[22]00.165331679.6028.96.3518.253.1699
    理论[23]00.165101683.3729.37866.366318.8763.1775
    理论[24]00.165401675276.35
    理论[25]00.165001665.9326.996.365018.613.198
    理论[26]00.1639916906.453.19
    理论[27]00.164651685.5129.37866.40118.4
    理论[28]00.164901690306.37818.63.1738
    理论[29]00.164541682.1428.6118.636
    理论[30]00.164701683.3525.806.391619.18
    理论[31]00.164546.31938c)3.1821
    a)本文的结果; b)文献[13]中的值; c) B0值.
    下载: 导出CSV

    表 3  AlH分子a3Π, A1Π, b3Σ, 23Σ+, 23Π, C1Σ+和15Σ态的光谱常数

    Table 3.  Spectroscopic parameters of the a3Π, A1Π, b3Σ, 23Σ+, 23Π, C1Σ+, and 15Σ states of AlH.

    Λ-S态来源Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102 αe/cm–1De/eV
    a3Π本文a)15445.970.158951800.7331.49546.653232.070761.2525
    实验[20]xb)6.7520c)
    理论[6]15702.280.1585
    理论[20]15223.3d)6.648c)
    理论[24]151150.16002012946.79
    理论[26]0.1586818116.89
    A1Π本文a)23746.940.166181415.29186.7506.87425136.4530.2384
    实验[14]23638.331416.50166.866.3864273.25410.24±0.01e)
    实验[15]23638.330.164831416.50166.866.3864273.2540
    实验[17]23763.47f)1082.77f)0f)6.3861173.2282
    理论[6]23959.820.1649
    理论[24]235360.166513701256.34
    理论[25]23529.19
    b3Σ本文a)41859.740.158761741.7238.55376.7222911.38081.5480
    实验[19]414450.1571724642757.075964.3
    实验[20]x+26223.71d)6.7520c)
    理论[6]42165.980.1582
    理论[20]41370.7d)6.602c)
    23Σ+本文a)43694.990.160072683.33503.3416.7803466.25260.8836
    理论[6]43752.710.1565
    23Π本文a)43922.360.216421119.619.705303.703651.403631.2981
    理论[6]44202.150.2144
    C1Σ+势阱一本文a)44744.730.161601575.9091.07276.6925944.03370.7528
    实验[15]44675.370.161311575.34125.56.6680255.8440.7567
    实验[16]44675.370.161311575.34125.56.6680455.8390.7567
    理论[24]439990.157515661007.15
    理论[25]44621.500.1625
    C 1Σ+势阱二本文a)43964.500.36561484.7104.045861.298360.5240530.8517
    理论[6]44629.050.3648
    理论[24]410490.373549161.24
    理论[25]40595.830.3777
    15Σ本文a)53899.460.24733294.56746.15792.8039542.62710.0605
    a) 利用icMRCI + Q/56 + CV + SR理论获得的结果; b) x表示a3Π态相对于X1Σ+态的T0值;
    c) B0值; d) T0值; e) 文献[13]中的值; f) ωexe固定为0, 获得的结果.
    下载: 导出CSV

    表 4  AlH分子26个Ω态的离解关系

    Table 4.  Dissociation relationships of the 26 Ω states of the AlH molecule.

    原子态(Al + H)Ω态能级/cm–1
    本文实验[35]
    Al(3s23p 2P1/2) +
    H(1s 2S1/2)
    0, 0+, 100
    Al(3s23p 2P3/2) +
    H(1s 2S1/2)
    2, 1(2), 0+, 0103.93112.06
    Al(3s24s 2S1/2) +
    H(1s 2S1/2)
    0+, 0, 125281.5825347.76
    Al(3s3p2 4P1/2) +
    H(1s 2S1/2)
    0, 0+, 128760.8629020.41
    Al(3s3p2 4P3/2) +
    H(1s 2S1/2)
    2, 1(2), 0+, 028812.6629066.96
    Al(3s3p2 4P5/2) +
    H(1s 2S1/2)
    3, 2(2), 1(2), 0+, 028893.1629142.78
    下载: 导出CSV

    表 5  利用icMRCI + Q/56 + CV + SR + SOC理论获得的19个Ω态的光谱常数

    Table 5.  Spectroscopic parameters obtained by the icMRCI + Q/56 + CV + SR + SOC calculations for the 19 Ω states.

    Ω态Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102αe/cm–1De/eVRe附近主要的Λ-S态/%
    $ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $00.164231683.8323.82326.3515214.73603.1732X1Σ+ (100.00)
    ${\text{a} }{}^{3}{ { {\Pi } }_{ { {0}^- } }}$15405.800.158951778.2721.87276.649642.436021.2474a3Π (100.00)
    $ {\text{a}}{}^{3}{{{\Pi }}_{{{0}^ + }}} $15405.930.158951778.6622.06506.661041.342721.2618a3Π (100.00)
    a3Π115445.970.158951777.3621.43486.633863.901311.2424a3Π (100.00)
    a3Π215486.790.158951778.7122.09806.654971.914661.2523a3Π (100.00)
    A1Π123747.160.166181414.96186.4986.86983135.8910.2660a)A1Π (100.00)
    (3) 0+第一势阱41859.960.158761735.0513.17106.7169821.32991.1105b3Σ (100.00)
    (3) 0+第二势阱43881.100.216431114.603.714410.859923Π (100.00)
    (3) 0+第三势阱43964.940.36554484.3193.567001.298490.568790.8517C1Σ+ (100.00)
    (3) 141859.960.158760.0258b3Σ (100.00)
    (4) 1第一势阱42188.070.167872943.155.962621.232013Σ+ (99.96), b3Σ (0.04)
    (4) 1第二势阱43922.580.216421114.523.716291.016923Π (100.00)
    (3) 0第一势阱43694.980.160072685.046.793881.045223Σ+ (100.00)
    (3) 0第二势阱43880.880.216431118.659.058653.707902.612541.022123Π (100.00)
    (4) 046017.030.185613275.38937.5285.1502446.74981.029123Π (99.92), 23Σ+(0.08)
    (4) 0+第一势阱44744.950.161591562.416.669561.1870C1Σ+ (100.00)
    (4) 0+第二势阱45035.320.19346674.726161.96754.90192407.501.156423Π (97.66), b3Σ(2.34)
    (4) 0+第三势阱47498.040.263771589.912.259630.8510C1Σ+ (100.00)
    (5) 1第一势阱43694.980.160072768.867.392041.322723Σ+(100.00)
    (5) 1第二势阱45041.460.193641.1556b3Σ(99.42), 23Π (0.58)
    (5) 0+46034.370.185602898.991038.215.1732285.94441.036023Π (99.98), b3Σ(0.02)
    (6) 146021.850.185773308.86970.7125.1684553.55901.037523Σ+(99.96), 23Π (0.04)
    23Π243964.280.216401119.629.702723.704111.405471.289223Π (100.00)
    ${1}{}^{5}{ {\Sigma } }_{ { {0}^- } }^-$53899.240.24737292.19340.92542.7278022.16160.056815Σ (99.99), 23Σ+ (0.01)
    $1^{5} \Sigma_{1}^-$53899.460.24734294.95748.30392.8588257.29870.066115Σ (100.00)
    ${1}{}^{5}{ {\Sigma } }_{2}^-$53899.680.24733294.67346.86412.8313349.97710.066115Σ (100.00)
    a) 势阱的深度.
    下载: 导出CSV

    表 6  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(0, 0)和(0, 1)带Q支的振转跃迁

    Table 6.  Rovibrational transitions of the Q branch for the (0, 0) and (0, 1) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $system.

    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(0, 0)实验[17](0, 1)实验[17]
    123529.3723470.341.612×1070.99060.1310425.3021881.5721845.639.618×1040.00599.034×10–4457.33
    223528.0423469.191.609×1070.99040.2179425.3321880.9721845.229.846×1040.00610.0015457.34
    323526.0223467.451.605×1070.99010.3043425.3621880.0421844.581.020×1050.00630.0022457.36
    423523.3123465.101.599×1070.98970.3898425.4121878.7821843.701.067×1050.00660.0030457.39
    523519.8623462.121.591×1070.98920.4743425.4821877.1421842.551.129×1050.00700.0039457.42
    623515.6523458.471.581×1070.98860.5574425.5521875.1021841.101.205×1050.00750.0049457.47
    723510.6323454.121.570×1070.98780.6388425.6421872.6121839.301.299×1050.00820.0061457.52
    823504.7523449.001.557×1070.98690.7183425.7521869.6221837.111.411×1050.00890.0075457.58
    923497.9523443.071.542×1070.98570.7956425.8721866.0621834.461.544×1050.00990.0092457.66
    1023490.1523436.261.525×1070.98440.8702426.0121861.8721831.291.701×1050.01100.0112457.74
    1123481.2623428.481.506×1070.98270.9417426.1721856.9421827.521.885×1050.01230.0136457.85
    1223471.2023419.661.484×1070.98081.010426.3621851.1921823.052.100×1050.01390.0165457.97
    1323459.8323409.671.460×1070.97841.074426.5621844.4921817.772.350×1050.01580.0199458.11
    1423447.0323398.401.433×1070.97571.133426.8021836.7121811.572.640×1050.01800.0241458.27
    1523432.6423385.701.402×1070.97231.187427.0621827.6821804.292.975×1050.02060.0290458.46
    1623416.4623371.411.368×1070.96831.234427.3521817.2121795.753.362×1050.02380.0349458.68
    1723398.2623355.311.329×1070.96341.274427.6921805.0721785.773.807×1050.02760.0420458.94
    下载: 导出CSV

    表 7  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(0, 2)和(0, 3)带Q支的振转跃迁

    Table 7.  Rovibrational transitions of the Q branch for the (0, 2) and (0, 3) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $ system.

    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(0, 2)实验[17](0,3)
    120290.3720276.855.595×1040.00346.113×10–4493.2018753.828.717×1025.355×10–51.115×10–5533.60
    220290.4720277.155.637×1040.00350.0010493.1918754.629.044×1025.565×10–51.927×10–5533.58
    320290.6120277.595.700×1040.00350.0015493.1918755.799.552×1025.893×10–52.850×10–5533.55
    420290.7620278.155.787×1040.00360.0019493.1918757.331.026×1036.355×10–53.936×10–5533.50
    520290.8920278.805.898×1040.00370.0024493.1818759.191.121×1036.972×10–55.254×10–5533.45
    620290.9720279.506.037×1040.00380.0029493.1818761.341.244×1037.777×10–56.888×10–5533.39
    720290.9520280.216.206×1040.00390.0034493.1818763.741.401×1038.811×10–58.946×10–5533.32
    820290.7820280.886.411×1040.00410.0040493.1918766.331.599×1031.013×10–41.157×10–4533.25
    920290.3920281.456.655×1040.00430.0046493.1918769.051.849×1031.182×10–41.495×10–4533.17
    1020289.7120281.856.945×1040.00450.0053493.2118771.812.165×1031.397×10–41.934×10–4533.09
    1120288.6520282.007.289×1040.00480.0061493.2418774.532.564×1031.673×10–42.508×10–4533.02
    1220287.1120281.807.697×1040.00510.0070493.2718777.103.071×1032.029×10–43.264×10–4532.94
    1320284.9620281.158.181×1040.00550.0080493.3318779.413.719×1032.492×10–44.268×10–4532.88
    1420282.0820279.918.759×1040.00600.0093493.4018781.314.553×1033.101×10–45.612×10–4532.82
    1520278.2820277.949.450×1040.00660.0107493.4918782.635.638×1033.910×10–47.427×10–4532.79
    1620273.3920275.061.028×1050.00730.0124493.6118783.197.065×1035.002×10–49.907×10–4532.77
    1720267.1520271.071.129×1050.00820.0144493.7618782.728.970×1036.502×10–40.0013532.78
    下载: 导出CSV

    表 8  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(1, 0)和(1, 1)带Q支的振转跃迁

    Table 8.  Rovibrational transitions of the Q branch for the (1, 0) and (1, 1) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $ system.

    $\tilde{v} $/cm–1Aυ'J'υ''J
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(1, 0)实验[17](1, 1)实验[17]
    124590.5324551.641.828×1060.16700.0136406.9522942.7422926.948.154×1060.74490.0697436.18
    224586.0324547.551.837×1060.16870.0228407.0222938.9622923.598.079×1060.74190.1151436.25
    324579.2224541.371.852×1060.17140.0322407.1422933.2422918.507.967×1060.73730.1590436.36
    424570.0324533.041.871×1060.17500.0418407.2922925.5022911.647.815×1060.73100.2006436.51
    524558.3624522.501.894×1060.17970.0518407.4822915.6422902.937.623×1060.72300.2394436.69
    624544.0824509.561.921×1060.18540.0622407.7222903.5322892.197.387×1060.71300.2745436.92
    724527.0324494.161.951×1060.19240.0729408.0022889.0122879.357.106×1060.70090.3050437.20
    下载: 导出CSV

    表 9  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(1, 2)和(1, 3)带Q支的振转跃迁

    Table 9.  Rovibrational transitions of the Q branch for the (1, 2) and (1, 3) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $system.

    $\tilde{v} $/cm–1Aυ'J'υ''J ''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(1, 2)实验[17](1, 3)实验[17]
    121351.5421358.166.384×1050.05830.0063468.6819814.9919843.912.767×1050.02530.0032505.03
    221348.4721355.526.437×1050.05910.0106468.7519812.6119841.972.790×1050.02560.0053505.09
    321343.8121351.526.514×1050.06030.0150468.8519808.9919839.032.825×1050.02610.0076505.18
    421337.4821346.096.615×1050.06190.0196468.9919804.0519835.012.872×1050.02690.0099505.31
    521329.3921339.176.739×1050.06390.0244469.1719797.6919829.852.931×1050.02780.0123505.47
    621319.4021330.596.881×1050.06640.0295469.3919789.7819823.383.003×1050.02900.0149505.67
    721307.3521320.257.037×1050.06940.0349469.6619780.1419815.513.088×1050.03050.0178505.92
    下载: 导出CSV

    表 10  A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $系统(1, 4)和(1, 5)带Q支的振转跃迁

    Table 10.  Rovibrational transitions of the Q branch for the (1, 4) and (1, 5) bands of the A1Π1$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $ system.

    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    $\tilde{v} $/cm–1Aυ'J'υ''J''
    /s–1
    Rυ'J'υ''J''gfυ'J'υ''J''λυ'J'υ''J''
    /nm
    J''(1, 4)实验[17](1,5)
    118331.3918382.883.727×1040.00344.988×10–4545.9016899.391.003×1049.167×10–41.580×10–4592.16
    218329.6918381.643.815×1040.00358.512×10–4545.9516898.361.031×1049.469×10–42.707×10–4592.19
    318327.0918379.733.951×1040.00370.0012546.0316896.761.074×1049.944×10–43.950×10–4592.25
    418323.5118377.094.140×1040.00390.0017546.1416894.521.135×1040.00115.368×10–4592.33
    518318.8418373.664.388×1040.00420.0022546.2716891.531.217×1040.00127.035×10–4592.43
    618312.9718369.254.703×1040.00450.0027546.4516887.651.324×1040.00139.047×10–4592.57
    718305.7118363.805.096×1040.00500.0034546.6716882.731.461×1040.00140.0012592.74
    下载: 导出CSV

    表 11  $ {{\text{a}}^{3}}{{{\Pi }}_{{{0}^ + }}} $(υ' = 0—3, J' = 0, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—4, J'' = 1, –)系统的振转跃迁

    Table 11.  Rovibrational transitions of the $ {{\text{a}}^{3}}{{{\Pi }}_{{{0}^ + }}} $(υ' = 0—3, J' = 0, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—4, J'' = 1, –) system.

    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (0, 0)15439.351.42330.48158.952×10–9648.16(1, 0)17153.571.11180.26665.665×10–9583.38
    (0, 1)13791.561.37150.46391.081×10–8725.60(1, 1)15505.780.32720.07852.040×10–9645.38
    (0, 2)12200.350.14270.04831.437×10–9820.23(1, 2)13914.572.36360.56681.830×10–8719.18
    (0, 3)10663.800.01700.00572.237×10–10938.42(1, 3)12378.030.30470.07312.982×10–9808.46
    (0, 4)9180.200.00175.644×10–42.968×10–111090.08(1, 4)10894.420.05520.01326.968×10–10918.55
    (2, 0)18760.320.15340.02176.534×10–10533.42(3, 0)20242.839.974×10–47.907×10–53.649×10–12494.35
    (2, 1)17112.533.06260.43281.568×10–8584.78(3, 1)18595.040.35180.02791.526×10–9538.16
    (2, 2)15521.320.01240.00187.738×10–11644.73(3, 2)17003.845.95240.47193.086×10–8588.52
    (2, 3)13984.783.35090.47362.569×10–8715.57(3, 3)15467.290.85620.06795.365×10–9646.99
    (2, 4)12501.170.36620.05183.513×10–9800.49(3, 4)13983.685.00150.39653.835×10–8715.63
    下载: 导出CSV

    表 12  a3Π1(υ' = 0—3, J' = 1, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0 —4, J'' = 1, –)系统的振转跃迁

    Table 12.  Rovibrational transitions of the a3Π1(υ' = 0—3, J' = 1, +) –$ {\text{X}}{}^{1}{{\Sigma }}_{{{0}^ + }}^ + $(υ'' = 0—4, J'' = 1, –) system.

    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (υ', υ'')$\tilde{v} $
    /cm–1
    Aυ'J'υ′′J''
    /s–1
    Rυ'J'υ′′J''gfυ'J'υ′′J''λυ'J'υ′′J''
    /nm
    (0, 0)8076.521.07620.94667.420×10–81239.04(1, 0)9138.010.56960.06653.068×10–81095.11
    (0, 1)6362.810.00720.04937.977×10–101572.75(1, 1)7424.290.27400.84812.236×10–81347.89
    (0, 2)4756.623.940×10–40.00387.832×10–112103.83(1, 2)5818.100.01420.07481.887×10–91720.00
    (0, 3)3274.751.009×10–52.791×10–44.233×10–123055.84(1, 3)4336.240.00200.00964.722×10–102307.79
    (0, 4)1943.341.047×10–62.303×10–51.246×10–125149.44(1, 4)3004.821.304×10–48.994×10–46.496×10–113330.35
    (2, 0)18806.495.770×10–49.414×10–67.337×10–12532.11(3, 0)20288.570.00631.050×10–46.836×10–11493.24
    (2, 1)17158.706.53530.10669.983×10–8583.21(3, 1)18640.770.06220.00108.047×10–10536.84
    (2, 2)15567.4949.0090.79969.095×10–7642.82(3, 2)17049.576.79390.11411.051×10–7586.94
    (2, 3)14030.954.64910.07591.062×10–7713.22(3, 3)15513.0247.9920.80588.969×10–7645.08
    (2, 4)12547.340.97900.01602.797×10–8797.55(3, 4)14029.423.20350.05387.320×10–8713.29
    下载: 导出CSV
  • [1]

    Herbig G H 1956 Publ. Astron. Soc. Pac. 68 204Google Scholar

    [2]

    Kamiński T, Wong K T, Schmidt M R, et al. 2016 Astron. Astrophys. 592 A42Google Scholar

    [3]

    Pavlenko Y V, Tennyson J, Yurchenko S N, et al. 2022 Mon. Not. R. Astron. Soc. 516 5655Google Scholar

    [4]

    Karthikeyan B, Rajamanickam N, Bagare S P 2010 Sol. Phys. 264 279Google Scholar

    [5]

    Halfen D T, Ziurys L M 2014 Astrophys. J. 791 65Google Scholar

    [6]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018Google Scholar

    [7]

    Basquin O H 1901 Astrophys. J. 14 1Google Scholar

    [8]

    Deutsch J L, Neil W S, Ramsay D A 1987 J. Mol. Spectrosc. 125 115Google Scholar

    [9]

    White J B, Dulick M, Bernath P F 1993 J. Chem. Phys. 99 8371Google Scholar

    [10]

    Ito F, Nakanaga T, Takeo H, Jones H 1994 J. Mol. Spectrosc. 164 379Google Scholar

    [11]

    Rice J K, Pasternack L, Nelson H H 1992 Chem. Phys. Lett. 189 43Google Scholar

    [12]

    Ram R S, Bernath P F 1996 Appl. Optics. 35 2879Google Scholar

    [13]

    Baltayan P, Nedelec O 1979 J. Chem. Phys. 70 2399Google Scholar

    [14]

    Szajna W, Zachwieja M 2009 Eur. Phys. J. D 55 549Google Scholar

    [15]

    Szajna W, Zachwieja M, Hakalla R, Kępa R 2011 Acta Phys. Pol. A. 120 417Google Scholar

    [16]

    Szajna W, Zachwieja M 2010 J. Mol. Spectrosc. 260 130Google Scholar

    [17]

    Szajna W, Kȩpa R, Para A, Piotrowska I, Ryzner S, Field R W, Heays A N, Hakalla R 2023 J. Mol. Spectrosc. 391 111735Google Scholar

    [18]

    Zhang Y, Stuke M 1988 Chem. Phys. Lett. 149 310Google Scholar

    [19]

    Zhu Y F, Shehadeh R, Grant E R 1992 J. Chem. Phys. 97 883Google Scholar

    [20]

    Tao C, Tan X F, Dagdigian P J, Alexander M H 2003 J. Chem. Phys. 118 10477Google Scholar

    [21]

    Szajna W, Hakalla R, Kolek P, Zachwieja M 2017 J. Quant. Spectrosc. Ra. 187 167Google Scholar

    [22]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 99 1914Google Scholar

    [23]

    Shi D H, Liu H, Zhang X N, Sun J F, Liu Y F, Zhu Z L 2011 Int. J. Quantum. Chem. 111 554Google Scholar

    [24]

    Zhao S T, Li J, Li R, Yin S, Guo H J 2021 Chin. Phys. Lett. 38 043101Google Scholar

    [25]

    Qin Z, Bai T R, Liu L H 2021 Astrophys. J. 917 87Google Scholar

    [26]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928Google Scholar

    [27]

    Brown A, Wasylishen R E 2013 J. Mol. Spectrosc. 292 8Google Scholar

    [28]

    Hirata S, Yanai T, De Jong W A, Nakajima T, Hirao K 2004 J. Chem. Phys. 120 3297Google Scholar

    [29]

    Karton A, Martin J M L 2010 J. Chem. Phys. 133 144102Google Scholar

    [30]

    Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3Google Scholar

    [31]

    Koput J 2019 J. Comput. Chem. 40 2522Google Scholar

    [32]

    Yurchenko S N, Williams H, Leyland P C, Lodi L, Tennyson J 2018 Mon. Not. R. Astron. Soc. 479 1401Google Scholar

    [33]

    Sindhan R, Sriramachandran P, Shanmugavel R, Ramaswamy S 2023 New. Astron. 99 101939Google Scholar

    [34]

    Di Rosa M D 2004 Eur. Phys. J. D. 31 395Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J. & NIST ASD Team 2022 NIST Atomic Spectra Database (version 5.10) [2023-4-13]

    [36]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M 2023 MOLPRO (version 2010.1) [2023-4-13]

    [37]

    侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰 2022 物理学报 71 213101Google Scholar

    Hou Q Y, Guan H Y, Huang Y L, Chen S L, Yang M, Wan M J 2022 Acta Phys. Sin. 71 213101Google Scholar

    [38]

    邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 物理学报 71 103101Google Scholar

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101Google Scholar

    [39]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [40]

    Dunning Jr T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [41]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48Google Scholar

    [42]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [43]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [44]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [45]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [46]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [47]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett 110 143001Google Scholar

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的O-2光谱常数计算. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] 邢伟, 李胜周, 张昉, 孙金锋, 李文涛, 朱遵略. OH+离子14个Λ-S态和27个Ω态光谱性质的理论研究. 物理学报, 2024, 73(22): 223101. doi: 10.7498/aps.73.20241301
    [3] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [4] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [5] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [6] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [7] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [8] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [9] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [10] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [12] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [13] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [14] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [15] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  3357
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-05-19
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回