-
基于几何相位的编码超表面对太赫兹(THz)波的偏振状态进行多维度、多自由度调控, 具有重要的应用前景. 本文提出了一种由反“S”形状的金属图案编码粒子构建的超表面, 垂直入射情况下, 在0.50—1.80 THz范围内的太赫兹波振幅反射率高于80%; 结合Pancharatnam-Berry几何相位理论, 通过旋转所设计单元的角度, 获得8种编码粒子, 设计了3种不同序列排布的1-bit, 2-bit和3-bit编码超表面, 并操控反射THz波分别产生不同角度的分束和偏折. 此外, 采用正入射和变角度的THz时域光谱仪分别对各个编码子单元结构阵列的反射特性(包括振幅反射率、相位、相位覆盖范围等)和设计的2-bit超表面的角度偏折现象进行测试; 对比理论数值、模拟结果和实验结果, 分析理论数值和实验数值之间存在偏差的原因, 对满足实际需求的超表面逆向设计具有一定的借鉴意义.
-
关键词:
- 太赫兹波 /
- Pancharatnam-Berry相位 /
- 编码超表面 /
- 操控
Multi-dimension and multi-freedom modulation of polarization state based on the geometrical-phase periodic encoding metasurface has important application prospects. Here, terahertz metasurface composed of specially shaped metal pattern coded particles is proposed. When the coded particles are normally incident, the amplitude reflectivity of the terahertz wave is above 80% in a range of 0.50–1.80 THz. Combined with the Pancharatnam-Berry (P-B) phase theory, 8 kinds of coded particles are designed by rotating the angle of the designed unit. Three kinds of 1-bit, 2-bit, and 3-bit periodic encoding metasurfaces with different encoding sequences are used to manipulate the reflected terahertz waves splitting into multiple-beam with different deflection angles. In addition, both reflection characteristics (including amplitude, phase, and phase coverage) of all coded particles and the angle deflection of the designed 2-bit periodic metasurface are measured by normal incidence THz time-domain spectrometer and variable incident angle THz time-domain spectrometer, respectively. Based on generalized Snell law and experimental results, the reason for the discrepancy between theoretical value and experimental value is further analyzed, which can provide a reference for the reverse design of the coded metasurfaces to meet various practical needs.-
Keywords:
- terahertz wave /
- Pancharatnam-Berry phase /
- coded metasurfaces /
- manipulation
[1] Chen M L, Jiang L J, Sha W 2017 IEEE Antennas. Wirel. Propag. Lett. 17 110Google Scholar
[2] Fu X, Liang H W, Li J T 2021 Front. Optoelectron 14 170Google Scholar
[3] Ali S, Davies J R, Mendonca J T 2010 Phys. Rev. Lett. 105 035001Google Scholar
[4] Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar
[5] Gollub J N, Yurduseven O, Trofatter K P, Arnitz D, Lmani M F, Sleasman T, Boyarsky M, Rose A 2017 Sci. Rep. 7 42650Google Scholar
[6] Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B 2018 Nanoscale 10 4237Google Scholar
[7] Cai T, Wang G M, Xu H X, Tang S W, Li H P, Liang J G, Zhuang Y Q 2017 Annalen der Physik 530 1700321Google Scholar
[8] Wang X, Ding J, Zheng B, An S, Zhai G, Zhang H 2018 Sci. Rep. 8 1876Google Scholar
[9] Chen, Z, Hui D, Xiong Q, Chen L 2018 Appl. Phys. A 124 281Google Scholar
[10] Lei L, Li S, Huang H, Tao K, Xu P 2018 Opt. Express 26 5686Google Scholar
[11] Ghosh S, Lim S 2018 Sci. Rep. 8 10169Google Scholar
[12] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar
[13] Biswas S R, Gutiérrez C E, Nemilentsau A, Lee I, Oh S, Avouris P, Low T 2018 Phys. Rev. Appl. 9 3034021Google Scholar
[14] Peng Y X, Wang K J, He M D, Luo J H, Zhang X M 2018 Opt. Commun. 412 1Google Scholar
[15] Liu M Z, Zhu W Q, Huo P C, Feng L, Song M W, Zhang C, Chen L, Lezec Henri J, Lu Y Q, Agrawal A, Xu T 2021 Light: Sci. Appl. 10 107Google Scholar
[16] Hosseininejad S E, Rouhi K, Neshat M, Aparicio A C, Alarcon E 2019 IEEE Trans. Nanotechnol 18 734Google Scholar
[17] Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar
[18] Qi Y, Zhang Y, Liu C, Zhang T, Wang X 2020 Results Phys. 16 103012Google Scholar
[19] Hu J, Bandyopadhyay S, Liu Y, Shao L 2021 Front. Phys. 8 586087Google Scholar
[20] Yao J, Lin R, Chen M K, Tsai D P 2023 Advanced Photonics 5 024001Google Scholar
[21] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar
[22] Zhang L, Wu R Y, Bai G D, Wu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar
[23] Li F F, Fang W, Chen P, Poo Y 2018 Opt. Express 26 33878Google Scholar
[24] Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Opt. Mater. 7 1801429Google Scholar
[25] Bai G D, Ma Q, Shahid I, Bao L, Jing H B, Zhang L, Wu H T, Wu R Y, Zhang H C, Yang C, Cui T J 2018 Adv. Opt. Mater. 6 1800657Google Scholar
[26] Fu X M, Wang J F, Fan Y, Yang J, Li Y F, Yan M B, Zhang J Q, Qu S B 2019 J. Phys. D: Appl. Phys. 52 115103Google Scholar
[27] Wang J, Jiang Y 2018 Opt. Commun. 416 125Google Scholar
[28] Fang Q H, Wu L P, Pan W K, Li M H, Dong J F 2020 Appl. Phys. Lett. 117 074102Google Scholar
[29] Kiani M, Tayarni M, Momeni A, Rajabalipanah H, Abdolali A 2020 Opt. Express 28 5410Google Scholar
[30] Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Emerg. Sel. Topics Circuits Syst. 10 20Google Scholar
[31] Qi Y P, Zhang B H, Liu C Q, Deng X Y 2020 IEEE Access 8 116675Google Scholar
[32] Zheng C, Li J, Wang G, Li J, Wang S, Li M, Zhao H, Yue Z, Zhang Y, Zhang Y, Yao J 2021 Nanophotonics 10 1347Google Scholar
[33] Tan Z Y, Fan F, Chang S J 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar
[34] Zhao T, Jing X, Tang X, Bie X, Luo T, Gan H, He Y, Li C, Hong Z 2021 Opt. Laser Eng. 141 106556Google Scholar
[35] Yu N, Genevet P, Kats M A, et al. 2011 Science 334 333Google Scholar
[36] 张腾, 王丽艳, 王新源, 崔彬, 杨玉平 2019 红外与毫米波学报 38 733Google Scholar
Zhang T, Wang L, Wang X, Cui B, Yang Y 2019 J. Infrared Millim. Waves 38 733Google Scholar
[37] Wang Q, Plum E, Yang Q, Zhang X, Xu Q, Xu Y, Han J, Zhang W 2018 Light: Sci. Appl. 7 25Google Scholar
[38] Tan Y, Qu K, Chen K, et al. 2022 Adv. Opt. Mater. 10 2200565Google Scholar
-
图 2 (a) 编码粒子的结构示意图; (b) 圆偏振波正入射下单元的同偏振和交叉偏振的振幅反射率; 三个谐振频率处结构单元的表面电场(c)、表面电流(d)和背面电流(e)的分布图
Fig. 2. (a) Structure of coded particle; (b) co-polarization and cross-polarization amplitude reflectivities of the unit under normal incidence of circularly polarized waves; distribution diagrams of the front surface electric field (c), front surface current (d), and rear surface current (e) of the structural unit at three resonant frequencies.
图 5 1.5 THz线偏振(LP)波法向入射下2-bit编码超表面的远场散射图, 其中(a) 3D远场散射, (b) 2D远场散射; 1.5 THz圆偏振(CP)波法向入射下2-bit编码超表面2D远场散射图, 其中(c)右旋圆偏振(RCP), (d)左旋圆偏振(LCP)
Fig. 5. Far-field scattering patterns of 2-bit encoded metasurface under normal incidence of LP waves at 1.5 THz: (a) 3D far-field scattering pattern; (b) 2D far-field scattering map. 2D far-field scattering patterns of 2-bit encoded metasurface under normal incidence of CP waves at 1.5 THz: (c) RCP; (d) LCP.
图 6 LP波法向入射下3-bit编码超表面和相同尺寸的裸金属板的远场散射图 (a) 1.50 THz处编码超表面的3D远场散射图; (b) 1.60 THz处编码超表面的3D远场散射图; (c) 1.70 THz处编码超表面的3D远场散射图; (d) 1.80 THz处编码超表面的3D远场散射图; (e) 1.50 THz处编码超表面的2D远场散射图; (f) 1.60 THz处编码超表面的2D远场散射图; (g) 1.70 THz处编码超表面的2D远场散射图; (h) 1.80 THz处编码超表面的2D远场散射图; (i) 1.50 THz处裸金属板的2D远场散射图; (j) 1.60 THz处裸金属板的2D远场散射图; (k) 1.70 THz处裸金属板的2D远场散射图; (l) 1.80 THz处裸金属板的2D远场散射图
Fig. 6. Far-field scattering patterns of a 3-bit encoded metasurface and a bare metal plate under normal incidence of LP waves: 3D far-field scattering pattern of the encoded metasurface at 1.50 (a), 1.60 (b), 1.70 (c) and 1.8 THz (d); 2D far-field scattering pattern of the encoded metasurface at 1.50 (e), 1.60 (f), 1.70 (g) and 1.80 THz (h); 2D far-field scattering pattern of bare metal plate at 1.50 (i), 1.60 (j), 1.70 (k) and 1.80 THz (l).
图 8 不同反射角度下2-bit编码超表面的反射特性测试结果 (a)时域波形图; (b)时域信号最大值Ep; (c) 1.00, 1.50和1.80 THz的振幅反射率.
Fig. 8. Reflection characteristics of 2-bit coded metasurface under different reflection angles: (a) Time-domain waveforms; (b) the maximum value Ep of the time-domain signal; (c) the frequency components at 1.00, 1.50 and 1.80 THz.
-
[1] Chen M L, Jiang L J, Sha W 2017 IEEE Antennas. Wirel. Propag. Lett. 17 110Google Scholar
[2] Fu X, Liang H W, Li J T 2021 Front. Optoelectron 14 170Google Scholar
[3] Ali S, Davies J R, Mendonca J T 2010 Phys. Rev. Lett. 105 035001Google Scholar
[4] Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar
[5] Gollub J N, Yurduseven O, Trofatter K P, Arnitz D, Lmani M F, Sleasman T, Boyarsky M, Rose A 2017 Sci. Rep. 7 42650Google Scholar
[6] Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B 2018 Nanoscale 10 4237Google Scholar
[7] Cai T, Wang G M, Xu H X, Tang S W, Li H P, Liang J G, Zhuang Y Q 2017 Annalen der Physik 530 1700321Google Scholar
[8] Wang X, Ding J, Zheng B, An S, Zhai G, Zhang H 2018 Sci. Rep. 8 1876Google Scholar
[9] Chen, Z, Hui D, Xiong Q, Chen L 2018 Appl. Phys. A 124 281Google Scholar
[10] Lei L, Li S, Huang H, Tao K, Xu P 2018 Opt. Express 26 5686Google Scholar
[11] Ghosh S, Lim S 2018 Sci. Rep. 8 10169Google Scholar
[12] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar
[13] Biswas S R, Gutiérrez C E, Nemilentsau A, Lee I, Oh S, Avouris P, Low T 2018 Phys. Rev. Appl. 9 3034021Google Scholar
[14] Peng Y X, Wang K J, He M D, Luo J H, Zhang X M 2018 Opt. Commun. 412 1Google Scholar
[15] Liu M Z, Zhu W Q, Huo P C, Feng L, Song M W, Zhang C, Chen L, Lezec Henri J, Lu Y Q, Agrawal A, Xu T 2021 Light: Sci. Appl. 10 107Google Scholar
[16] Hosseininejad S E, Rouhi K, Neshat M, Aparicio A C, Alarcon E 2019 IEEE Trans. Nanotechnol 18 734Google Scholar
[17] Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar
[18] Qi Y, Zhang Y, Liu C, Zhang T, Wang X 2020 Results Phys. 16 103012Google Scholar
[19] Hu J, Bandyopadhyay S, Liu Y, Shao L 2021 Front. Phys. 8 586087Google Scholar
[20] Yao J, Lin R, Chen M K, Tsai D P 2023 Advanced Photonics 5 024001Google Scholar
[21] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar
[22] Zhang L, Wu R Y, Bai G D, Wu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar
[23] Li F F, Fang W, Chen P, Poo Y 2018 Opt. Express 26 33878Google Scholar
[24] Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Opt. Mater. 7 1801429Google Scholar
[25] Bai G D, Ma Q, Shahid I, Bao L, Jing H B, Zhang L, Wu H T, Wu R Y, Zhang H C, Yang C, Cui T J 2018 Adv. Opt. Mater. 6 1800657Google Scholar
[26] Fu X M, Wang J F, Fan Y, Yang J, Li Y F, Yan M B, Zhang J Q, Qu S B 2019 J. Phys. D: Appl. Phys. 52 115103Google Scholar
[27] Wang J, Jiang Y 2018 Opt. Commun. 416 125Google Scholar
[28] Fang Q H, Wu L P, Pan W K, Li M H, Dong J F 2020 Appl. Phys. Lett. 117 074102Google Scholar
[29] Kiani M, Tayarni M, Momeni A, Rajabalipanah H, Abdolali A 2020 Opt. Express 28 5410Google Scholar
[30] Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Emerg. Sel. Topics Circuits Syst. 10 20Google Scholar
[31] Qi Y P, Zhang B H, Liu C Q, Deng X Y 2020 IEEE Access 8 116675Google Scholar
[32] Zheng C, Li J, Wang G, Li J, Wang S, Li M, Zhao H, Yue Z, Zhang Y, Zhang Y, Yao J 2021 Nanophotonics 10 1347Google Scholar
[33] Tan Z Y, Fan F, Chang S J 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar
[34] Zhao T, Jing X, Tang X, Bie X, Luo T, Gan H, He Y, Li C, Hong Z 2021 Opt. Laser Eng. 141 106556Google Scholar
[35] Yu N, Genevet P, Kats M A, et al. 2011 Science 334 333Google Scholar
[36] 张腾, 王丽艳, 王新源, 崔彬, 杨玉平 2019 红外与毫米波学报 38 733Google Scholar
Zhang T, Wang L, Wang X, Cui B, Yang Y 2019 J. Infrared Millim. Waves 38 733Google Scholar
[37] Wang Q, Plum E, Yang Q, Zhang X, Xu Q, Xu Y, Han J, Zhang W 2018 Light: Sci. Appl. 7 25Google Scholar
[38] Tan Y, Qu K, Chen K, et al. 2022 Adv. Opt. Mater. 10 2200565Google Scholar
计量
- 文章访问数: 2312
- PDF下载量: 93
- 被引次数: 0