搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抵御大变形超导体的发现

郭静 吴奇 孙力玲

引用本文:
Citation:

抵御大变形超导体的发现

郭静, 吴奇, 孙力玲

Discovery of robust superconductivity against volume shrinkage

Guo Jing, Wu Qi, Sun Li-Ling
PDF
HTML
导出引用
  • 超导体在压力的作用下会产生原子间距的缩小, 进而导致晶格参数的改变, 甚至能使其原子排列规律变化, 引发结构相变. 超导体的超导电性是一种演生现象, 是由超导体中所包含的电荷、自旋、轨道、晶格等多种相互作用的自由度所决定的. 因此, 当超导体在外部压力作用下发生晶体结构的变化, 通常都会引起超导电性的改变, 尤其超导转变温度的变化. 本文介绍近年发现的一类能够抵御大变形的超导体(robust superconductivity against volume shrinkage, RSAVS)——这类超导体在压力作用下, 即使发生很大的体积压缩, 其超导转变温度仍保持不变. 这种奇异的能抵御压缩变形的稳定超导电性最初是在对高熵合金的高压研究中观察到的, 后续研究发现在广泛应用的商业化NbTi合金以及Nb, Ta等金属元素超导体中也具有这种可抵御大变形的超导电性. 分析结果显示, 这类超导体都具有体心立方晶体结构, 并由过渡族金属元素构成. 这种超导体的发现为统一理解“什么因素决定了超导体的超导转变温度? ”这一关键问题提出了新的研究课题和挑战.
    The superconducting transition temperature (Tc) of superconductor is related intimately to multiple degree of freedom of charge, spin, orbital and lattice. Many studies have indicated that pressure is an effective way to tune Tc though changing crystal structure and electronic structure. Here, we report a new progress made in the high-pressure studies – discovery of a new type of superconductors whose Tc is robust against large volume shrinkage under extremely high pressure, named RSAVS (robust superconductivity against volume shrinkage) superconductor. Such RSAVS behavior was observed initially in the high entropy alloys of (TaNb)0.67(HfZrTi)0.33 and (ScZrNbTa)0.6(RhPd)0.4, then in the widely-used NbTi alloy, Nb and Ta elements. Analysis shows that this type of superconductor possesses a body-centered cubic crystal structure and is composed of transition metal elements. The observed results not only present new research topics but also raise the question of what determines Tc of conventional or unconventional superconductors.
      通信作者: 孙力玲, llsun@iphy.ac.cn
    • 基金项目: 国家自然科学基金 (批准号: U2032214, 12122414)和国家重点基础研究发展计划(批准号: 2022YFA1403900, 2021YFA1401800)资助的课题.
      Corresponding author: Sun Li-Ling, llsun@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032214, 12122414) and the National Basic Research Program of China (Grant Nos. 2022YFA1403900, 2021YFA1401800).
    [1]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [2]

    Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar

    [3]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [4]

    Guo J, Zhou Y Z, Huang C, Cai S, Sheng Y T, Gu G D, Yang C L, Lin G C, Yang K, Li A G, Wu Q, Xiang T, Sun L L 2020 Nat. Phys. 16 295Google Scholar

    [5]

    Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K, Hemley R J 2010 Nature 466 950Google Scholar

    [6]

    Zhou Y Z, Guo  J, Cai S, Zhao J Y , Gu G D, Lin C T, Yan H T, Huang C, Yang C L, Long S J, Gong Y, Li Y C , Li X D , Wu Q, Hu J P , Zhou  X J, Xiang T , Sun L L, 2022 Nat. Phys. 18 406Google Scholar

    [7]

    Deng L, Zheng Y, Wu Z, Huyan S, Wu H C, Nie Y, Cho K, Chu C W 2019 Proc. Natl. Acad. Sci. U. S. A. 116 2004Google Scholar

    [8]

    Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67Google Scholar

    [9]

    Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, Hosono H 2008 Nature 453 376Google Scholar

    [10]

    Gao P W, Sun L L, Ni N, Guo J, Wu Q, Zhang C, Gu D C, Yang K, Li A G, Jiang S, Cava R J, Zhao Z X 2014 Adv. Mater. 26 2346Google Scholar

    [11]

    Yamauchi T, Hirata Y, Ueda Y, Ohgushi K 2015 Phys. Rev. Lett. 115 246402Google Scholar

    [12]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630Google Scholar

    [13]

    Zhang C, Sun L L, Chen Z Y, Zhou X J, Wu Q, Yi W, Guo J, Dong X L, Zhao Z X 2011 Phys. Rev. B 83 140504(RGoogle Scholar

    [14]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001Google Scholar

    [15]

    Hamlin J J 2015 Physica C 514 59Google Scholar

    [16]

    Eiling A, Schilling J S 1981 J. Phys. F: Met. Phys. 11 623

    [17]

    Shimizu K 2015 Physica C 514 46Google Scholar

    [18]

    Akahama Y, Kobayashi M, Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843Google Scholar

    [19]

    Ishizuka M, Iketani M, Endo S 2000 Phys. Rev. B 61 R3823Google Scholar

    [20]

    Sakata M, Nakamoto Y, Shimizu K 2011 Phys. Rev. B 83 220512(RGoogle Scholar

    [21]

    Yabuuchi T, Matsuoka T, Nakamoto Y, Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703Google Scholar

    [22]

    Zhang C L, He X, Liu C, Li Z W, Lu K, Zhang S J, Feng S M, Wang X C, Peng Y, Long Y W, Yu R C, Wang L H, Prakapenk V, Chariton S, Li Q, Liu H Z, Chen C F , Jin C Q 2022 Nat. Commun. 13 5411Google Scholar

    [23]

    Ying J J, Liu S Q, Lu Q, Wen X K, Gui Z G, Zhang Y Q, Wang X M, Sun J, Chen X H 2023 Phys. Rev. Lett. 130 256002Google Scholar

    [24]

    Eremets M I, Struzhkin V V, Mao H K, Hemley R J 2001 Science 293 272Google Scholar

    [25]

    Struzhkin V V, Hemley R J, Mao H K, Timofeev Y A 1997 Nature 390 382Google Scholar

    [26]

    Sun L L, Matsuoka T, Tamari Y, Shimizu K, Tian J F, Tian Y, Zhang C D, Shen C M, Yi W, Gao H J, Li J Q, Dong X L, Zhao Z X 2009 Phys. Rev. B 79 140505(RGoogle Scholar

    [27]

    Shimizu K, Kimura T, FuromotoS, Takeda K, Kontani K, Onuki Y, Amaya K 2001 Nature 412 316Google Scholar

    [28]

    Shimizu K, Ishikawa H, Takao D, Yagi T, Amaya K 2002 Nature 419 597Google Scholar

    [29]

    Guo J, Wang H H, Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J, Sun L L 2017 Phys. Rev. B 96 224513Google Scholar

    [30]

    Shimizu K, Suhara K, Eremets M I, Amaya K 1998 Nature 393 767Google Scholar

    [31]

    Sun H L, Huo M W, Hu X W, Li J Y, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature arXiv: 2305.09586

    [32]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G , Strglich F 2003 Science 302 2104Google Scholar

    [33]

    Drozdov1 A P, Eremets1 M I, Troyan1 I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [34]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phy. Rev. Lett. 122 027001Google Scholar

    [35]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [36]

    Zhang L, Wang Y, Lü J , Ma Y 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [37]

    Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z , Jin C Q 2022 Nat. Commun. 13 2863Google Scholar

    [38]

    Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T, Ma Y M 2022 Phys. Rev. Lett. 128 167001Google Scholar

    [39]

    Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, Eremets M I 2021 Nat. Commun. 12 5075Google Scholar

    [40]

    Chen W, Semenok D V, Huang X, Shu H, Li X, Duan D, Cui T, Oganov A R 2021 Phys. Rev. Lett. 127 117001Google Scholar

    [41]

    Guo J, Wang H H, Rohrc F von, Wang Z, Cai S, Zhou Y Z, Yang K, Li A G, Jiang S, Wu Q, Cava R J, Sun L L 2017 Proc. Natl. Acad. Sci. U. S. A. 114 13144Google Scholar

    [42]

    Guo J, Lin G C, Cai S, Xi C Y, Zhang C J, Sun W S, Wang Q L, Yang K, Li A G, Wu Q, Zhang Y H, Xiang T, Cava R J, L L Sun 2019 Adv. Mater. 31 1807240Google Scholar

    [43]

    Huang C, Guo J, Zhang J F, Stolze K, Cai S, Liu K, Weng H M, Lu Z Y, Wu Q, Xiang T, Cava R J, Sun L L 2020 Phys. Rev. Mater. 4 071801(RGoogle Scholar

    [44]

    Yeh J W, Chen S K, Lin S J, Gan G Y, Chin S T, Shun T T, Tsau S H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [45]

    Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar

    [46]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [47]

    Zhang W R, Liaw P K, Zhang Y 2018 Chin. Mater. 61 2Google Scholar

    [48]

    George E P, Rabbe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [49]

    Gludovatz B, Hohenwarter A, Thurston K V S, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar

    [50]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, Geogre E P , Ritchie R O 2014 Science 345 1153Google Scholar

    [51]

    Kou H, Lu J, Li Y 2014 Adv. Mater. 26 5518Google Scholar

    [52]

    Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748Google Scholar

    [53]

    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [54]

    Sun L L, Cava R J 2019 Phys. Rev. Mater. 3 090301Google Scholar

    [55]

    von Rohr F O, Cava R J 2018 Phys. Rev. Mater. 2 034801Google Scholar

    [56]

    Vrtnik S, Koželj P, Meden A, Maiti S, Steurer W, Feuerbacher M, Dolinšek J 2017 J. Alloys Compd. 695 3530Google Scholar

    [57]

    Yuan Y, Wu Y, Luo H, Wang Z, Liang X, Yang Z, Wang H, Liu X, Lu Z 2018 Front. Mater. 5 72Google Scholar

    [58]

    Xia S, Lousada C M, Mao H, Maier A C, Korzhavyi P A, Sström R, Wang Y , Zhang Y 2018 Front. Mater. 5 26Google Scholar

    [59]

    Stolze K, Cevallos F A, Kong T, Cava R J 2018 J. Mater. Chem. C 6 10441Google Scholar

    [60]

    Wu K Y, Chen S K, Wu J M 2018 Nat. Sci. J. 10 110Google Scholar

    [61]

    Scanlan R M, Malozemoff A P, Larbalestier D C 2004 Proc. IEEE 92 1639Google Scholar

    [62]

    Parizh M, Lvovsky Y, Sumption M 2017 Supercond. Sci. Technol. 30 014007Google Scholar

    [63]

    Liu J H, Cheng J S, Wang Q L 2013 IEEE Trans. Appl. Supercond. 23 4802606Google Scholar

    [64]

    Zhang P X, Li J F, Guo Q, Zhu Y M, Yan K J, Wang R L, Zhang K L, Liu X H, Feng Y 2019 Titanium for Consumer Applications 15 279Google Scholar

    [65]

    Banno N, Kobayashi K, Uchida A, Kitaguchi H 2021 J. Mater. Sci. 56 20197Google Scholar

    [66]

    Struzhkin V V, Timofeev Y A, Hemley R J, Mao H K 1997 Phys. Rev. Lett. 79 4262Google Scholar

    [67]

    Tonkov E Y, Ponyatovsky E 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press LLC) p237

    [68]

    Cynn H, Yoo C S 1999 Phys. Rev. B 59 8526Google Scholar

    [69]

    Kenichi T, Singh A K 2006 Phys. Rev. B 73 224119Google Scholar

    [70]

    Gao M C, Miracle D B, Maurice D, Yan X H, Zhang Y, Hawk J A 2018 J. Mater. Res. 33 3138Google Scholar

    [71]

    Browne A J, Strong D P, Cava R J 2023 J. Solid State Chem. 321 123881Google Scholar

    [72]

    Jung S G, Han Y, Kim J H, Hidayati R, Rhyee J S, Lee J M, Kang W N, Choi W S, Jeon H R, Suk J, Park T 2022 Nat. Commun. 13 3373Google Scholar

    [73]

    Koblischka M R, Koblischka-Veneva A 2022 Metals 12 568Google Scholar

    [74]

    Mgrdichian L 2018 A Material that Superconducts Continuously up to Extreme Pressures

    [75]

    Research Highlight: Super-squeezing can't crush this superconductor's powers 2017 Nature 552 150Google Scholar

    [76]

    Lee C H, Iyo A, Eisaki H, Kito H, Fern, ez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704Google Scholar

    [77]

    Mizuguchi Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013Google Scholar

    [78]

    Zhang J F, Gao M, Liu K, Lu Z Y 2020 Phys. Rev. B 102 195140Google Scholar

    [79]

    Liu X Q, Jiang P, Wang Y M, Li M T, Li N N, Zhang Q, Wang Y D, Li Y L, Yang W G 2022 Phys. Rev. B 105 224511Google Scholar

  • 图 1  由电阻-温度曲线确定的超导转变温度与压力关系相图, 压力范围为0至190.6 GPa[41]

    Fig. 1.  Phase diagram of superconducting transition temperature vs. applied pressure up to 190.6 GPa for the HEA, combined with plots of the corresponding resistance vs. temperature [41].

    图 2  (a) 高熵合金(ScZrNbTa)0.6(RhPd)0.4在2.9—71.8 GPa压力范围内的电阻随温度变化关系; (b) 较低温度范围的归一化电阻; (c) 3.9—80.1 GPa压力范围X射线粉末衍射图谱; (d), (e) 晶格参数和晶胞体积随压力的变化[41]

    Fig. 2.  (a) Temperature dependence of the resistance in the pressure range of 2.9–71.8 GPa; (b) normalized resistance at lower temperature, exhibiting sharp superconducting transitions with zero resistance and the continuous increase in Tc upon compression; (c) X-ray powder diffraction patterns collected in the pressure range of 3.9–80.1 GPa; (d), (e) pressure dependence of the lattice parameter and unit cell volume [41].

    图 3  高压下NbTi合金结构信息 (a) 0.1—200.5 GPa压力范围内X射线粉末衍射图谱; (b), (c) 两轮独立测量获得的晶格参数和晶胞体积随压力的变化. 图(b)插图为NbTi超导体晶体结构示意图 [42]

    Fig. 3.  Structure information for NbTi at high pressure: (a) X-ray powder diffraction patterns collected in the pressure range of 0.1–200.5 GPa; (b), (c) pressure dependence of the lattice parameter and unit cell volume for independent two runs. The inset of Figure (b) displays the schematic crystal structure of the NbTi superconductor [42].

    图 4  Nb0.44Ti0.56的超导性在不同压力和磁场条件下的变化以及摩尔体积的压力依赖关系. 在压力与超导转变温度(Tc)关系图中, 彩色球代表来自不同轮实验的Tc值. 在磁场B(T)与Tc关系图中, 黑色、绿色和红色球代表在零磁场和外加磁场下获得的Tc值. 在压力与体积(–∆V = VpV0, 其中Vp是在固定压力下的体积, V0是环境压力下的体积)关系图中, 粉色和蓝色方块表示来自两轮独立实验的结果. 红色五角星号代表最高压力下的Tc值, 绿色五角星号表示1.8 K下的临界磁场和本研究的最大压力, 蓝色五角星号表示研究中所施加最高压力下的相对体积[42]

    Fig. 4.  Superconductivity of Nb0.44Ti0.56 under various pressure and magnetic field conditions, and the pressure dependence of its molar volume. In the panel of pressure versus superconducting transition temperature (Tc), the colored balls represent the Tc obtained from the different experimental runs. In the panel of magnetic field, B (T) versus Tc, the black, green, and red balls represent Tc obtained under zero and applied magnetic fields. In the panel of pressure versus volume (–ΔV = Vp – V0, where Vp is the volume at fixed pressure and V0 is the ambient-pressure volume), the pink and blue squares represent the results obtained from the two independent runs. The red star labels the Tc value at the record-high pressure, the green star marks the critical field at 1.8 K and the maximum pressure of this study, and the blue star refers to the relative volume at the highest pressure investigated. The top left panel displays that the maximum pressure of this study falls in that of outer core of the earth [42].

    图 5  单质金属Nb和Ta的超导转变温度随压力的变化. 数据引自[41, 66, 67]

    Fig. 5.  Pressure dependence of Tc for elemental Ta and Nb. The data were taken from Refs. [41, 66, 67] .

    图 6  RSAVS超导体的超导转变温度随体积的变化 (a) (TaNb)0.67(HfZrTi)0.33和(ScZrNbTa)0.6(RhPd)0.4高熵合金、NbTi合金和单质金属Ta和Nb的超导转变温度(Tc)随体积的变化. 为了方便对不同材料进行比较, 采用相对体积变化率(–ΔV/V0)作为变量. 图中的箭头表示RSAVS状态出现的临界压力(PC). 对于(ScZrNbTa)0.6(RhPd)0.4超导体, PC约为30 GPa(对应体积变化率–ΔV/V0约为15.5%), 对于(TaNb)0.67(HfZrTi)0.33超导体, PC为60 GPa(–ΔV/V0 = 21.6%), 对于NbTi超导体, PC为120 GPa(–ΔV/V0 = 34.7%), 而对于单质Ta和Nb超导体, PC为1 bar. PEP*分别表示RSAVS态的结束压力和测量到RSAVS态的最高压力. (b) (TaNb)0.67(HfZrTi)0.33和(ScZrNbTa)0.6(RhPd)0.4高熵合金、NbTi合金以及单质Ta和Nb的晶体结构示意图, 均为体心立方结构[43]

    Fig. 6.  Superconductivity and crystal structure for the RSAVS superconductors. (a) The pressure-dependent change in the superconducting transition temperature (Tc) of the (TaNb)0.67(HfZrTi)0.33 and (ScZrNbTa)0.6(RhPd)0.4 high-entropy alloys, the NbTi alloy, and the elemental metals, Ta and Nb. In order to facilitate the comparison of the different materials, we use the volume shrinkage (–ΔV/V0) as a variable. Arrows in the diagram indicate the critical pressure (PC) where the RSAVS state emerges. PC is about 30 GPa [the corresponding volume (–ΔV/V0 ) change is about 15.5%] for the (ScZrNbTa)0.6(RhPd)0.4 superconductor, 60 GPa (–ΔV/V0 = 21.6%) for the (TaNb)0.67(HfZrTi)0.33 superconductor, and 120 GPa (–ΔV/V0= 34.7%) for the NbTi superconductor, while PC is 1 bar for the elemental Ta and Nb superconductors. PE and P* represent the end pressure of the RSAVS state and the highest pressure measured for the RSAVS state, respectively. (b) Sketches for the lattice structure of the (TaNb)0.67(HfZrTi)0.33 and (ScZrNbTa)0.6(RhPd)0.4 high-entropy alloys, NbTi alloy, and elemental Ta and Nb, which all possess body-centered cubic structure [43]

  • [1]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [2]

    Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar

    [3]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [4]

    Guo J, Zhou Y Z, Huang C, Cai S, Sheng Y T, Gu G D, Yang C L, Lin G C, Yang K, Li A G, Wu Q, Xiang T, Sun L L 2020 Nat. Phys. 16 295Google Scholar

    [5]

    Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K, Hemley R J 2010 Nature 466 950Google Scholar

    [6]

    Zhou Y Z, Guo  J, Cai S, Zhao J Y , Gu G D, Lin C T, Yan H T, Huang C, Yang C L, Long S J, Gong Y, Li Y C , Li X D , Wu Q, Hu J P , Zhou  X J, Xiang T , Sun L L, 2022 Nat. Phys. 18 406Google Scholar

    [7]

    Deng L, Zheng Y, Wu Z, Huyan S, Wu H C, Nie Y, Cho K, Chu C W 2019 Proc. Natl. Acad. Sci. U. S. A. 116 2004Google Scholar

    [8]

    Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67Google Scholar

    [9]

    Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, Hosono H 2008 Nature 453 376Google Scholar

    [10]

    Gao P W, Sun L L, Ni N, Guo J, Wu Q, Zhang C, Gu D C, Yang K, Li A G, Jiang S, Cava R J, Zhao Z X 2014 Adv. Mater. 26 2346Google Scholar

    [11]

    Yamauchi T, Hirata Y, Ueda Y, Ohgushi K 2015 Phys. Rev. Lett. 115 246402Google Scholar

    [12]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630Google Scholar

    [13]

    Zhang C, Sun L L, Chen Z Y, Zhou X J, Wu Q, Yi W, Guo J, Dong X L, Zhao Z X 2011 Phys. Rev. B 83 140504(RGoogle Scholar

    [14]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001Google Scholar

    [15]

    Hamlin J J 2015 Physica C 514 59Google Scholar

    [16]

    Eiling A, Schilling J S 1981 J. Phys. F: Met. Phys. 11 623

    [17]

    Shimizu K 2015 Physica C 514 46Google Scholar

    [18]

    Akahama Y, Kobayashi M, Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843Google Scholar

    [19]

    Ishizuka M, Iketani M, Endo S 2000 Phys. Rev. B 61 R3823Google Scholar

    [20]

    Sakata M, Nakamoto Y, Shimizu K 2011 Phys. Rev. B 83 220512(RGoogle Scholar

    [21]

    Yabuuchi T, Matsuoka T, Nakamoto Y, Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703Google Scholar

    [22]

    Zhang C L, He X, Liu C, Li Z W, Lu K, Zhang S J, Feng S M, Wang X C, Peng Y, Long Y W, Yu R C, Wang L H, Prakapenk V, Chariton S, Li Q, Liu H Z, Chen C F , Jin C Q 2022 Nat. Commun. 13 5411Google Scholar

    [23]

    Ying J J, Liu S Q, Lu Q, Wen X K, Gui Z G, Zhang Y Q, Wang X M, Sun J, Chen X H 2023 Phys. Rev. Lett. 130 256002Google Scholar

    [24]

    Eremets M I, Struzhkin V V, Mao H K, Hemley R J 2001 Science 293 272Google Scholar

    [25]

    Struzhkin V V, Hemley R J, Mao H K, Timofeev Y A 1997 Nature 390 382Google Scholar

    [26]

    Sun L L, Matsuoka T, Tamari Y, Shimizu K, Tian J F, Tian Y, Zhang C D, Shen C M, Yi W, Gao H J, Li J Q, Dong X L, Zhao Z X 2009 Phys. Rev. B 79 140505(RGoogle Scholar

    [27]

    Shimizu K, Kimura T, FuromotoS, Takeda K, Kontani K, Onuki Y, Amaya K 2001 Nature 412 316Google Scholar

    [28]

    Shimizu K, Ishikawa H, Takao D, Yagi T, Amaya K 2002 Nature 419 597Google Scholar

    [29]

    Guo J, Wang H H, Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J, Sun L L 2017 Phys. Rev. B 96 224513Google Scholar

    [30]

    Shimizu K, Suhara K, Eremets M I, Amaya K 1998 Nature 393 767Google Scholar

    [31]

    Sun H L, Huo M W, Hu X W, Li J Y, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature arXiv: 2305.09586

    [32]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G , Strglich F 2003 Science 302 2104Google Scholar

    [33]

    Drozdov1 A P, Eremets1 M I, Troyan1 I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [34]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phy. Rev. Lett. 122 027001Google Scholar

    [35]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [36]

    Zhang L, Wang Y, Lü J , Ma Y 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [37]

    Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z , Jin C Q 2022 Nat. Commun. 13 2863Google Scholar

    [38]

    Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T, Ma Y M 2022 Phys. Rev. Lett. 128 167001Google Scholar

    [39]

    Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, Eremets M I 2021 Nat. Commun. 12 5075Google Scholar

    [40]

    Chen W, Semenok D V, Huang X, Shu H, Li X, Duan D, Cui T, Oganov A R 2021 Phys. Rev. Lett. 127 117001Google Scholar

    [41]

    Guo J, Wang H H, Rohrc F von, Wang Z, Cai S, Zhou Y Z, Yang K, Li A G, Jiang S, Wu Q, Cava R J, Sun L L 2017 Proc. Natl. Acad. Sci. U. S. A. 114 13144Google Scholar

    [42]

    Guo J, Lin G C, Cai S, Xi C Y, Zhang C J, Sun W S, Wang Q L, Yang K, Li A G, Wu Q, Zhang Y H, Xiang T, Cava R J, L L Sun 2019 Adv. Mater. 31 1807240Google Scholar

    [43]

    Huang C, Guo J, Zhang J F, Stolze K, Cai S, Liu K, Weng H M, Lu Z Y, Wu Q, Xiang T, Cava R J, Sun L L 2020 Phys. Rev. Mater. 4 071801(RGoogle Scholar

    [44]

    Yeh J W, Chen S K, Lin S J, Gan G Y, Chin S T, Shun T T, Tsau S H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [45]

    Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar

    [46]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [47]

    Zhang W R, Liaw P K, Zhang Y 2018 Chin. Mater. 61 2Google Scholar

    [48]

    George E P, Rabbe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [49]

    Gludovatz B, Hohenwarter A, Thurston K V S, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar

    [50]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, Geogre E P , Ritchie R O 2014 Science 345 1153Google Scholar

    [51]

    Kou H, Lu J, Li Y 2014 Adv. Mater. 26 5518Google Scholar

    [52]

    Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748Google Scholar

    [53]

    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [54]

    Sun L L, Cava R J 2019 Phys. Rev. Mater. 3 090301Google Scholar

    [55]

    von Rohr F O, Cava R J 2018 Phys. Rev. Mater. 2 034801Google Scholar

    [56]

    Vrtnik S, Koželj P, Meden A, Maiti S, Steurer W, Feuerbacher M, Dolinšek J 2017 J. Alloys Compd. 695 3530Google Scholar

    [57]

    Yuan Y, Wu Y, Luo H, Wang Z, Liang X, Yang Z, Wang H, Liu X, Lu Z 2018 Front. Mater. 5 72Google Scholar

    [58]

    Xia S, Lousada C M, Mao H, Maier A C, Korzhavyi P A, Sström R, Wang Y , Zhang Y 2018 Front. Mater. 5 26Google Scholar

    [59]

    Stolze K, Cevallos F A, Kong T, Cava R J 2018 J. Mater. Chem. C 6 10441Google Scholar

    [60]

    Wu K Y, Chen S K, Wu J M 2018 Nat. Sci. J. 10 110Google Scholar

    [61]

    Scanlan R M, Malozemoff A P, Larbalestier D C 2004 Proc. IEEE 92 1639Google Scholar

    [62]

    Parizh M, Lvovsky Y, Sumption M 2017 Supercond. Sci. Technol. 30 014007Google Scholar

    [63]

    Liu J H, Cheng J S, Wang Q L 2013 IEEE Trans. Appl. Supercond. 23 4802606Google Scholar

    [64]

    Zhang P X, Li J F, Guo Q, Zhu Y M, Yan K J, Wang R L, Zhang K L, Liu X H, Feng Y 2019 Titanium for Consumer Applications 15 279Google Scholar

    [65]

    Banno N, Kobayashi K, Uchida A, Kitaguchi H 2021 J. Mater. Sci. 56 20197Google Scholar

    [66]

    Struzhkin V V, Timofeev Y A, Hemley R J, Mao H K 1997 Phys. Rev. Lett. 79 4262Google Scholar

    [67]

    Tonkov E Y, Ponyatovsky E 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press LLC) p237

    [68]

    Cynn H, Yoo C S 1999 Phys. Rev. B 59 8526Google Scholar

    [69]

    Kenichi T, Singh A K 2006 Phys. Rev. B 73 224119Google Scholar

    [70]

    Gao M C, Miracle D B, Maurice D, Yan X H, Zhang Y, Hawk J A 2018 J. Mater. Res. 33 3138Google Scholar

    [71]

    Browne A J, Strong D P, Cava R J 2023 J. Solid State Chem. 321 123881Google Scholar

    [72]

    Jung S G, Han Y, Kim J H, Hidayati R, Rhyee J S, Lee J M, Kang W N, Choi W S, Jeon H R, Suk J, Park T 2022 Nat. Commun. 13 3373Google Scholar

    [73]

    Koblischka M R, Koblischka-Veneva A 2022 Metals 12 568Google Scholar

    [74]

    Mgrdichian L 2018 A Material that Superconducts Continuously up to Extreme Pressures

    [75]

    Research Highlight: Super-squeezing can't crush this superconductor's powers 2017 Nature 552 150Google Scholar

    [76]

    Lee C H, Iyo A, Eisaki H, Kito H, Fern, ez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704Google Scholar

    [77]

    Mizuguchi Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013Google Scholar

    [78]

    Zhang J F, Gao M, Liu K, Lu Z Y 2020 Phys. Rev. B 102 195140Google Scholar

    [79]

    Liu X Q, Jiang P, Wang Y M, Li M T, Li N N, Zhang Q, Wang Y D, Li Y L, Yang W G 2022 Phys. Rev. B 105 224511Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [4] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [5] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [6] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [7] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [8] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [9] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [10] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [11] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [12] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [13] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素. 物理学报, 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [14] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [15] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [16] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [17] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [18] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [19] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
    [20] 陈志谦, 郑仁蓉. 金属小粒子不同自旋态超导电性统计系综研究. 物理学报, 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
计量
  • 文章访问数:  3316
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-09-13
  • 上网日期:  2023-09-18
  • 刊出日期:  2023-12-05

/

返回文章
返回