-
超导体在压力的作用下会产生原子间距的缩小, 进而导致晶格参数的改变, 甚至能使其原子排列规律变化, 引发结构相变. 超导体的超导电性是一种演生现象, 是由超导体中所包含的电荷、自旋、轨道、晶格等多种相互作用的自由度所决定的. 因此, 当超导体在外部压力作用下发生晶体结构的变化, 通常都会引起超导电性的改变, 尤其超导转变温度的变化. 本文介绍近年发现的一类能够抵御大变形的超导体(robust superconductivity against volume shrinkage, RSAVS)——这类超导体在压力作用下, 即使发生很大的体积压缩, 其超导转变温度仍保持不变. 这种奇异的能抵御压缩变形的稳定超导电性最初是在对高熵合金的高压研究中观察到的, 后续研究发现在广泛应用的商业化NbTi合金以及Nb, Ta等金属元素超导体中也具有这种可抵御大变形的超导电性. 分析结果显示, 这类超导体都具有体心立方晶体结构, 并由过渡族金属元素构成. 这种超导体的发现为统一理解“什么因素决定了超导体的超导转变温度? ”这一关键问题提出了新的研究课题和挑战.The superconducting transition temperature (Tc) of superconductor is related intimately to multiple degree of freedom of charge, spin, orbital and lattice. Many studies have indicated that pressure is an effective way to tune Tc though changing crystal structure and electronic structure. Here, we report a new progress made in the high-pressure studies – discovery of a new type of superconductors whose Tc is robust against large volume shrinkage under extremely high pressure, named RSAVS (robust superconductivity against volume shrinkage) superconductor. Such RSAVS behavior was observed initially in the high entropy alloys of (TaNb)0.67(HfZrTi)0.33 and (ScZrNbTa)0.6(RhPd)0.4, then in the widely-used NbTi alloy, Nb and Ta elements. Analysis shows that this type of superconductor possesses a body-centered cubic crystal structure and is composed of transition metal elements. The observed results not only present new research topics but also raise the question of what determines Tc of conventional or unconventional superconductors.
-
Keywords:
- superconductivity /
- high pressure /
- high entropy alloy /
- NbTi alloy /
- metallic element
[1] Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar
[2] Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar
[3] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar
[4] Guo J, Zhou Y Z, Huang C, Cai S, Sheng Y T, Gu G D, Yang C L, Lin G C, Yang K, Li A G, Wu Q, Xiang T, Sun L L 2020 Nat. Phys. 16 295Google Scholar
[5] Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K, Hemley R J 2010 Nature 466 950Google Scholar
[6] Zhou Y Z, Guo J, Cai S, Zhao J Y , Gu G D, Lin C T, Yan H T, Huang C, Yang C L, Long S J, Gong Y, Li Y C , Li X D , Wu Q, Hu J P , Zhou X J, Xiang T , Sun L L, 2022 Nat. Phys. 18 406Google Scholar
[7] Deng L, Zheng Y, Wu Z, Huyan S, Wu H C, Nie Y, Cho K, Chu C W 2019 Proc. Natl. Acad. Sci. U. S. A. 116 2004Google Scholar
[8] Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67Google Scholar
[9] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, Hosono H 2008 Nature 453 376Google Scholar
[10] Gao P W, Sun L L, Ni N, Guo J, Wu Q, Zhang C, Gu D C, Yang K, Li A G, Jiang S, Cava R J, Zhao Z X 2014 Adv. Mater. 26 2346Google Scholar
[11] Yamauchi T, Hirata Y, Ueda Y, Ohgushi K 2015 Phys. Rev. Lett. 115 246402Google Scholar
[12] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630Google Scholar
[13] Zhang C, Sun L L, Chen Z Y, Zhou X J, Wu Q, Yi W, Guo J, Dong X L, Zhao Z X 2011 Phys. Rev. B 83 140504(RGoogle Scholar
[14] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001Google Scholar
[15] Hamlin J J 2015 Physica C 514 59Google Scholar
[16] Eiling A, Schilling J S 1981 J. Phys. F: Met. Phys. 11 623
[17] Shimizu K 2015 Physica C 514 46Google Scholar
[18] Akahama Y, Kobayashi M, Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843Google Scholar
[19] Ishizuka M, Iketani M, Endo S 2000 Phys. Rev. B 61 R3823Google Scholar
[20] Sakata M, Nakamoto Y, Shimizu K 2011 Phys. Rev. B 83 220512(RGoogle Scholar
[21] Yabuuchi T, Matsuoka T, Nakamoto Y, Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703Google Scholar
[22] Zhang C L, He X, Liu C, Li Z W, Lu K, Zhang S J, Feng S M, Wang X C, Peng Y, Long Y W, Yu R C, Wang L H, Prakapenk V, Chariton S, Li Q, Liu H Z, Chen C F , Jin C Q 2022 Nat. Commun. 13 5411Google Scholar
[23] Ying J J, Liu S Q, Lu Q, Wen X K, Gui Z G, Zhang Y Q, Wang X M, Sun J, Chen X H 2023 Phys. Rev. Lett. 130 256002Google Scholar
[24] Eremets M I, Struzhkin V V, Mao H K, Hemley R J 2001 Science 293 272Google Scholar
[25] Struzhkin V V, Hemley R J, Mao H K, Timofeev Y A 1997 Nature 390 382Google Scholar
[26] Sun L L, Matsuoka T, Tamari Y, Shimizu K, Tian J F, Tian Y, Zhang C D, Shen C M, Yi W, Gao H J, Li J Q, Dong X L, Zhao Z X 2009 Phys. Rev. B 79 140505(RGoogle Scholar
[27] Shimizu K, Kimura T, FuromotoS, Takeda K, Kontani K, Onuki Y, Amaya K 2001 Nature 412 316Google Scholar
[28] Shimizu K, Ishikawa H, Takao D, Yagi T, Amaya K 2002 Nature 419 597Google Scholar
[29] Guo J, Wang H H, Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J, Sun L L 2017 Phys. Rev. B 96 224513Google Scholar
[30] Shimizu K, Suhara K, Eremets M I, Amaya K 1998 Nature 393 767Google Scholar
[31] Sun H L, Huo M W, Hu X W, Li J Y, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature arXiv: 2305.09586
[32] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G , Strglich F 2003 Science 302 2104Google Scholar
[33] Drozdov1 A P, Eremets1 M I, Troyan1 I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar
[34] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phy. Rev. Lett. 122 027001Google Scholar
[35] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar
[36] Zhang L, Wang Y, Lü J , Ma Y 2017 Nat. Rev. Mater. 2 17005Google Scholar
[37] Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z , Jin C Q 2022 Nat. Commun. 13 2863Google Scholar
[38] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T, Ma Y M 2022 Phys. Rev. Lett. 128 167001Google Scholar
[39] Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, Eremets M I 2021 Nat. Commun. 12 5075Google Scholar
[40] Chen W, Semenok D V, Huang X, Shu H, Li X, Duan D, Cui T, Oganov A R 2021 Phys. Rev. Lett. 127 117001Google Scholar
[41] Guo J, Wang H H, Rohrc F von, Wang Z, Cai S, Zhou Y Z, Yang K, Li A G, Jiang S, Wu Q, Cava R J, Sun L L 2017 Proc. Natl. Acad. Sci. U. S. A. 114 13144Google Scholar
[42] Guo J, Lin G C, Cai S, Xi C Y, Zhang C J, Sun W S, Wang Q L, Yang K, Li A G, Wu Q, Zhang Y H, Xiang T, Cava R J, L L Sun 2019 Adv. Mater. 31 1807240Google Scholar
[43] Huang C, Guo J, Zhang J F, Stolze K, Cai S, Liu K, Weng H M, Lu Z Y, Wu Q, Xiang T, Cava R J, Sun L L 2020 Phys. Rev. Mater. 4 071801(RGoogle Scholar
[44] Yeh J W, Chen S K, Lin S J, Gan G Y, Chin S T, Shun T T, Tsau S H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[45] Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar
[46] Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar
[47] Zhang W R, Liaw P K, Zhang Y 2018 Chin. Mater. 61 2Google Scholar
[48] George E P, Rabbe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar
[49] Gludovatz B, Hohenwarter A, Thurston K V S, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar
[50] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, Geogre E P , Ritchie R O 2014 Science 345 1153Google Scholar
[51] Kou H, Lu J, Li Y 2014 Adv. Mater. 26 5518Google Scholar
[52] Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748Google Scholar
[53] Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar
[54] Sun L L, Cava R J 2019 Phys. Rev. Mater. 3 090301Google Scholar
[55] von Rohr F O, Cava R J 2018 Phys. Rev. Mater. 2 034801Google Scholar
[56] Vrtnik S, Koželj P, Meden A, Maiti S, Steurer W, Feuerbacher M, Dolinšek J 2017 J. Alloys Compd. 695 3530Google Scholar
[57] Yuan Y, Wu Y, Luo H, Wang Z, Liang X, Yang Z, Wang H, Liu X, Lu Z 2018 Front. Mater. 5 72Google Scholar
[58] Xia S, Lousada C M, Mao H, Maier A C, Korzhavyi P A, Sström R, Wang Y , Zhang Y 2018 Front. Mater. 5 26Google Scholar
[59] Stolze K, Cevallos F A, Kong T, Cava R J 2018 J. Mater. Chem. C 6 10441Google Scholar
[60] Wu K Y, Chen S K, Wu J M 2018 Nat. Sci. J. 10 110Google Scholar
[61] Scanlan R M, Malozemoff A P, Larbalestier D C 2004 Proc. IEEE 92 1639Google Scholar
[62] Parizh M, Lvovsky Y, Sumption M 2017 Supercond. Sci. Technol. 30 014007Google Scholar
[63] Liu J H, Cheng J S, Wang Q L 2013 IEEE Trans. Appl. Supercond. 23 4802606Google Scholar
[64] Zhang P X, Li J F, Guo Q, Zhu Y M, Yan K J, Wang R L, Zhang K L, Liu X H, Feng Y 2019 Titanium for Consumer Applications 15 279Google Scholar
[65] Banno N, Kobayashi K, Uchida A, Kitaguchi H 2021 J. Mater. Sci. 56 20197Google Scholar
[66] Struzhkin V V, Timofeev Y A, Hemley R J, Mao H K 1997 Phys. Rev. Lett. 79 4262Google Scholar
[67] Tonkov E Y, Ponyatovsky E 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press LLC) p237
[68] Cynn H, Yoo C S 1999 Phys. Rev. B 59 8526Google Scholar
[69] Kenichi T, Singh A K 2006 Phys. Rev. B 73 224119Google Scholar
[70] Gao M C, Miracle D B, Maurice D, Yan X H, Zhang Y, Hawk J A 2018 J. Mater. Res. 33 3138Google Scholar
[71] Browne A J, Strong D P, Cava R J 2023 J. Solid State Chem. 321 123881Google Scholar
[72] Jung S G, Han Y, Kim J H, Hidayati R, Rhyee J S, Lee J M, Kang W N, Choi W S, Jeon H R, Suk J, Park T 2022 Nat. Commun. 13 3373Google Scholar
[73] Koblischka M R, Koblischka-Veneva A 2022 Metals 12 568Google Scholar
[74] Mgrdichian L 2018 A Material that Superconducts Continuously up to Extreme Pressures
[75] Research Highlight: Super-squeezing can't crush this superconductor's powers 2017 Nature 552 150Google Scholar
[76] Lee C H, Iyo A, Eisaki H, Kito H, Fern, ez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704Google Scholar
[77] Mizuguchi Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013Google Scholar
[78] Zhang J F, Gao M, Liu K, Lu Z Y 2020 Phys. Rev. B 102 195140Google Scholar
[79] Liu X Q, Jiang P, Wang Y M, Li M T, Li N N, Zhang Q, Wang Y D, Li Y L, Yang W G 2022 Phys. Rev. B 105 224511Google Scholar
-
图 2 (a) 高熵合金(ScZrNbTa)0.6(RhPd)0.4在2.9—71.8 GPa压力范围内的电阻随温度变化关系; (b) 较低温度范围的归一化电阻; (c) 3.9—80.1 GPa压力范围X射线粉末衍射图谱; (d), (e) 晶格参数和晶胞体积随压力的变化[41]
Fig. 2. (a) Temperature dependence of the resistance in the pressure range of 2.9–71.8 GPa; (b) normalized resistance at lower temperature, exhibiting sharp superconducting transitions with zero resistance and the continuous increase in Tc upon compression; (c) X-ray powder diffraction patterns collected in the pressure range of 3.9–80.1 GPa; (d), (e) pressure dependence of the lattice parameter and unit cell volume [41].
图 3 高压下NbTi合金结构信息 (a) 0.1—200.5 GPa压力范围内X射线粉末衍射图谱; (b), (c) 两轮独立测量获得的晶格参数和晶胞体积随压力的变化. 图(b)插图为NbTi超导体晶体结构示意图 [42]
Fig. 3. Structure information for NbTi at high pressure: (a) X-ray powder diffraction patterns collected in the pressure range of 0.1–200.5 GPa; (b), (c) pressure dependence of the lattice parameter and unit cell volume for independent two runs. The inset of Figure (b) displays the schematic crystal structure of the NbTi superconductor [42].
图 4 Nb0.44Ti0.56的超导性在不同压力和磁场条件下的变化以及摩尔体积的压力依赖关系. 在压力与超导转变温度(Tc)关系图中, 彩色球代表来自不同轮实验的Tc值. 在磁场B(T)与Tc关系图中, 黑色、绿色和红色球代表在零磁场和外加磁场下获得的Tc值. 在压力与体积(–∆V = Vp – V0, 其中Vp是在固定压力下的体积, V0是环境压力下的体积)关系图中, 粉色和蓝色方块表示来自两轮独立实验的结果. 红色五角星号代表最高压力下的Tc值, 绿色五角星号表示1.8 K下的临界磁场和本研究的最大压力, 蓝色五角星号表示研究中所施加最高压力下的相对体积[42]
Fig. 4. Superconductivity of Nb0.44Ti0.56 under various pressure and magnetic field conditions, and the pressure dependence of its molar volume. In the panel of pressure versus superconducting transition temperature (Tc), the colored balls represent the Tc obtained from the different experimental runs. In the panel of magnetic field, B (T) versus Tc, the black, green, and red balls represent Tc obtained under zero and applied magnetic fields. In the panel of pressure versus volume (–ΔV = Vp – V0, where Vp is the volume at fixed pressure and V0 is the ambient-pressure volume), the pink and blue squares represent the results obtained from the two independent runs. The red star labels the Tc value at the record-high pressure, the green star marks the critical field at 1.8 K and the maximum pressure of this study, and the blue star refers to the relative volume at the highest pressure investigated. The top left panel displays that the maximum pressure of this study falls in that of outer core of the earth [42].
图 6 RSAVS超导体的超导转变温度随体积的变化 (a) (TaNb)0.67(HfZrTi)0.33和(ScZrNbTa)0.6(RhPd)0.4高熵合金、NbTi合金和单质金属Ta和Nb的超导转变温度(Tc)随体积的变化. 为了方便对不同材料进行比较, 采用相对体积变化率(–ΔV/V0)作为变量. 图中的箭头表示RSAVS状态出现的临界压力(PC). 对于(ScZrNbTa)0.6(RhPd)0.4超导体, PC约为30 GPa(对应体积变化率–ΔV/V0约为15.5%), 对于(TaNb)0.67(HfZrTi)0.33超导体, PC为60 GPa(–ΔV/V0 = 21.6%), 对于NbTi超导体, PC为120 GPa(–ΔV/V0 = 34.7%), 而对于单质Ta和Nb超导体, PC为1 bar. PE和P*分别表示RSAVS态的结束压力和测量到RSAVS态的最高压力. (b) (TaNb)0.67(HfZrTi)0.33和(ScZrNbTa)0.6(RhPd)0.4高熵合金、NbTi合金以及单质Ta和Nb的晶体结构示意图, 均为体心立方结构[43]
Fig. 6. Superconductivity and crystal structure for the RSAVS superconductors. (a) The pressure-dependent change in the superconducting transition temperature (Tc) of the (TaNb)0.67(HfZrTi)0.33 and (ScZrNbTa)0.6(RhPd)0.4 high-entropy alloys, the NbTi alloy, and the elemental metals, Ta and Nb. In order to facilitate the comparison of the different materials, we use the volume shrinkage (–ΔV/V0) as a variable. Arrows in the diagram indicate the critical pressure (PC) where the RSAVS state emerges. PC is about 30 GPa [the corresponding volume (–ΔV/V0 ) change is about 15.5%] for the (ScZrNbTa)0.6(RhPd)0.4 superconductor, 60 GPa (–ΔV/V0 = 21.6%) for the (TaNb)0.67(HfZrTi)0.33 superconductor, and 120 GPa (–ΔV/V0= 34.7%) for the NbTi superconductor, while PC is 1 bar for the elemental Ta and Nb superconductors. PE and P* represent the end pressure of the RSAVS state and the highest pressure measured for the RSAVS state, respectively. (b) Sketches for the lattice structure of the (TaNb)0.67(HfZrTi)0.33 and (ScZrNbTa)0.6(RhPd)0.4 high-entropy alloys, NbTi alloy, and elemental Ta and Nb, which all possess body-centered cubic structure [43]
-
[1] Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar
[2] Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar
[3] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar
[4] Guo J, Zhou Y Z, Huang C, Cai S, Sheng Y T, Gu G D, Yang C L, Lin G C, Yang K, Li A G, Wu Q, Xiang T, Sun L L 2020 Nat. Phys. 16 295Google Scholar
[5] Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K, Hemley R J 2010 Nature 466 950Google Scholar
[6] Zhou Y Z, Guo J, Cai S, Zhao J Y , Gu G D, Lin C T, Yan H T, Huang C, Yang C L, Long S J, Gong Y, Li Y C , Li X D , Wu Q, Hu J P , Zhou X J, Xiang T , Sun L L, 2022 Nat. Phys. 18 406Google Scholar
[7] Deng L, Zheng Y, Wu Z, Huyan S, Wu H C, Nie Y, Cho K, Chu C W 2019 Proc. Natl. Acad. Sci. U. S. A. 116 2004Google Scholar
[8] Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67Google Scholar
[9] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, Hosono H 2008 Nature 453 376Google Scholar
[10] Gao P W, Sun L L, Ni N, Guo J, Wu Q, Zhang C, Gu D C, Yang K, Li A G, Jiang S, Cava R J, Zhao Z X 2014 Adv. Mater. 26 2346Google Scholar
[11] Yamauchi T, Hirata Y, Ueda Y, Ohgushi K 2015 Phys. Rev. Lett. 115 246402Google Scholar
[12] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630Google Scholar
[13] Zhang C, Sun L L, Chen Z Y, Zhou X J, Wu Q, Yi W, Guo J, Dong X L, Zhao Z X 2011 Phys. Rev. B 83 140504(RGoogle Scholar
[14] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001Google Scholar
[15] Hamlin J J 2015 Physica C 514 59Google Scholar
[16] Eiling A, Schilling J S 1981 J. Phys. F: Met. Phys. 11 623
[17] Shimizu K 2015 Physica C 514 46Google Scholar
[18] Akahama Y, Kobayashi M, Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843Google Scholar
[19] Ishizuka M, Iketani M, Endo S 2000 Phys. Rev. B 61 R3823Google Scholar
[20] Sakata M, Nakamoto Y, Shimizu K 2011 Phys. Rev. B 83 220512(RGoogle Scholar
[21] Yabuuchi T, Matsuoka T, Nakamoto Y, Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703Google Scholar
[22] Zhang C L, He X, Liu C, Li Z W, Lu K, Zhang S J, Feng S M, Wang X C, Peng Y, Long Y W, Yu R C, Wang L H, Prakapenk V, Chariton S, Li Q, Liu H Z, Chen C F , Jin C Q 2022 Nat. Commun. 13 5411Google Scholar
[23] Ying J J, Liu S Q, Lu Q, Wen X K, Gui Z G, Zhang Y Q, Wang X M, Sun J, Chen X H 2023 Phys. Rev. Lett. 130 256002Google Scholar
[24] Eremets M I, Struzhkin V V, Mao H K, Hemley R J 2001 Science 293 272Google Scholar
[25] Struzhkin V V, Hemley R J, Mao H K, Timofeev Y A 1997 Nature 390 382Google Scholar
[26] Sun L L, Matsuoka T, Tamari Y, Shimizu K, Tian J F, Tian Y, Zhang C D, Shen C M, Yi W, Gao H J, Li J Q, Dong X L, Zhao Z X 2009 Phys. Rev. B 79 140505(RGoogle Scholar
[27] Shimizu K, Kimura T, FuromotoS, Takeda K, Kontani K, Onuki Y, Amaya K 2001 Nature 412 316Google Scholar
[28] Shimizu K, Ishikawa H, Takao D, Yagi T, Amaya K 2002 Nature 419 597Google Scholar
[29] Guo J, Wang H H, Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J, Sun L L 2017 Phys. Rev. B 96 224513Google Scholar
[30] Shimizu K, Suhara K, Eremets M I, Amaya K 1998 Nature 393 767Google Scholar
[31] Sun H L, Huo M W, Hu X W, Li J Y, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature arXiv: 2305.09586
[32] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G , Strglich F 2003 Science 302 2104Google Scholar
[33] Drozdov1 A P, Eremets1 M I, Troyan1 I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar
[34] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phy. Rev. Lett. 122 027001Google Scholar
[35] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar
[36] Zhang L, Wang Y, Lü J , Ma Y 2017 Nat. Rev. Mater. 2 17005Google Scholar
[37] Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z , Jin C Q 2022 Nat. Commun. 13 2863Google Scholar
[38] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T, Ma Y M 2022 Phys. Rev. Lett. 128 167001Google Scholar
[39] Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, Eremets M I 2021 Nat. Commun. 12 5075Google Scholar
[40] Chen W, Semenok D V, Huang X, Shu H, Li X, Duan D, Cui T, Oganov A R 2021 Phys. Rev. Lett. 127 117001Google Scholar
[41] Guo J, Wang H H, Rohrc F von, Wang Z, Cai S, Zhou Y Z, Yang K, Li A G, Jiang S, Wu Q, Cava R J, Sun L L 2017 Proc. Natl. Acad. Sci. U. S. A. 114 13144Google Scholar
[42] Guo J, Lin G C, Cai S, Xi C Y, Zhang C J, Sun W S, Wang Q L, Yang K, Li A G, Wu Q, Zhang Y H, Xiang T, Cava R J, L L Sun 2019 Adv. Mater. 31 1807240Google Scholar
[43] Huang C, Guo J, Zhang J F, Stolze K, Cai S, Liu K, Weng H M, Lu Z Y, Wu Q, Xiang T, Cava R J, Sun L L 2020 Phys. Rev. Mater. 4 071801(RGoogle Scholar
[44] Yeh J W, Chen S K, Lin S J, Gan G Y, Chin S T, Shun T T, Tsau S H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[45] Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar
[46] Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar
[47] Zhang W R, Liaw P K, Zhang Y 2018 Chin. Mater. 61 2Google Scholar
[48] George E P, Rabbe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar
[49] Gludovatz B, Hohenwarter A, Thurston K V S, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar
[50] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, Geogre E P , Ritchie R O 2014 Science 345 1153Google Scholar
[51] Kou H, Lu J, Li Y 2014 Adv. Mater. 26 5518Google Scholar
[52] Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748Google Scholar
[53] Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar
[54] Sun L L, Cava R J 2019 Phys. Rev. Mater. 3 090301Google Scholar
[55] von Rohr F O, Cava R J 2018 Phys. Rev. Mater. 2 034801Google Scholar
[56] Vrtnik S, Koželj P, Meden A, Maiti S, Steurer W, Feuerbacher M, Dolinšek J 2017 J. Alloys Compd. 695 3530Google Scholar
[57] Yuan Y, Wu Y, Luo H, Wang Z, Liang X, Yang Z, Wang H, Liu X, Lu Z 2018 Front. Mater. 5 72Google Scholar
[58] Xia S, Lousada C M, Mao H, Maier A C, Korzhavyi P A, Sström R, Wang Y , Zhang Y 2018 Front. Mater. 5 26Google Scholar
[59] Stolze K, Cevallos F A, Kong T, Cava R J 2018 J. Mater. Chem. C 6 10441Google Scholar
[60] Wu K Y, Chen S K, Wu J M 2018 Nat. Sci. J. 10 110Google Scholar
[61] Scanlan R M, Malozemoff A P, Larbalestier D C 2004 Proc. IEEE 92 1639Google Scholar
[62] Parizh M, Lvovsky Y, Sumption M 2017 Supercond. Sci. Technol. 30 014007Google Scholar
[63] Liu J H, Cheng J S, Wang Q L 2013 IEEE Trans. Appl. Supercond. 23 4802606Google Scholar
[64] Zhang P X, Li J F, Guo Q, Zhu Y M, Yan K J, Wang R L, Zhang K L, Liu X H, Feng Y 2019 Titanium for Consumer Applications 15 279Google Scholar
[65] Banno N, Kobayashi K, Uchida A, Kitaguchi H 2021 J. Mater. Sci. 56 20197Google Scholar
[66] Struzhkin V V, Timofeev Y A, Hemley R J, Mao H K 1997 Phys. Rev. Lett. 79 4262Google Scholar
[67] Tonkov E Y, Ponyatovsky E 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press LLC) p237
[68] Cynn H, Yoo C S 1999 Phys. Rev. B 59 8526Google Scholar
[69] Kenichi T, Singh A K 2006 Phys. Rev. B 73 224119Google Scholar
[70] Gao M C, Miracle D B, Maurice D, Yan X H, Zhang Y, Hawk J A 2018 J. Mater. Res. 33 3138Google Scholar
[71] Browne A J, Strong D P, Cava R J 2023 J. Solid State Chem. 321 123881Google Scholar
[72] Jung S G, Han Y, Kim J H, Hidayati R, Rhyee J S, Lee J M, Kang W N, Choi W S, Jeon H R, Suk J, Park T 2022 Nat. Commun. 13 3373Google Scholar
[73] Koblischka M R, Koblischka-Veneva A 2022 Metals 12 568Google Scholar
[74] Mgrdichian L 2018 A Material that Superconducts Continuously up to Extreme Pressures
[75] Research Highlight: Super-squeezing can't crush this superconductor's powers 2017 Nature 552 150Google Scholar
[76] Lee C H, Iyo A, Eisaki H, Kito H, Fern, ez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704Google Scholar
[77] Mizuguchi Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013Google Scholar
[78] Zhang J F, Gao M, Liu K, Lu Z Y 2020 Phys. Rev. B 102 195140Google Scholar
[79] Liu X Q, Jiang P, Wang Y M, Li M T, Li N N, Zhang Q, Wang Y D, Li Y L, Yang W G 2022 Phys. Rev. B 105 224511Google Scholar
计量
- 文章访问数: 3316
- PDF下载量: 109
- 被引次数: 0