搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应

李洋帆 郭红霞 张鸿 白如雪 张凤祁 马武英 钟向丽 李济芳 卢小杰

引用本文:
Citation:

双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应

李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰

Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors

Li Yang-Fan, Guo Hong-Xia, Zhang Hong, Bai Ru-Xue, Zhang Feng-Qi, Ma Wu-Ying, Zhong Xiang-Li, Li Ji-Fang, Lu Xiao-Jie
PDF
HTML
导出引用
  • 本文针对第四代双沟槽型碳化硅场效应晶体管开展了不同源漏偏置电压下208 MeV锗离子辐照实验, 分析了器件产生单粒子效应的物理机制. 实验结果表明, 辐照过程中随着初始偏置电压的增大, 器件漏极电流增长更明显; 在偏置电压为400 V时, 重离子注量达到9×104 ion/cm2, 器件发生单粒子烧毁, 在偏置电压为500 V时, 重离子注量达到3×104 ion/cm2, 器件发生单粒子烧毁, 单粒子烧毁阈值电压在器件额定工作电压的34% (400 V)以下. 对辐照后器件进行栅特性测试, 辐照过程中偏置电压为100 V的器件泄漏电流无明显变化; 200 V和300 V时, 器件的栅极泄漏电流和漏极泄漏电流都增大. 结合TCAD仿真模拟进一步分析器件单粒子效应微观机制, 结果表明在低偏压下, 泄漏电流增大是因为电场集中在栅氧化层的拐角处, 导致了氧化层的损伤; 在高偏压下, 辐照过程中N外延层和N+衬底交界处发生的电场强度增大, 引起显著的碰撞电离, 由碰撞电离产生的局域大电流密度导致晶格温度超过碳化硅的熔点, 最终引起单粒子烧毁.
    In this paper, experiments on 208 MeV Ge ion irradiation with different source-drain bias voltages are carried out for the double-trench SiC metal–oxide–semiconductor field-effect transistors, and the physical mechanism of the single event effect is analyzed. The experimental results show that the drain leakage current of the device increases more obviously with the increase of the initial bias voltage during irradiation. When the bias voltage is 400 V during irradiation, the device has a single event burned at a fluence of 9×104 ion/cm2, and when the bias voltage is 500 V, the device has a single event burned at a fluence of 3×104 ion/cm2, so when the LET value is 37.3 MeV·cm2/mg, the SEB threshold of DUT does not exceed 400 V, which is lower than 34% of the rated operational voltage. The post gate-characteristics test results show that the leakage current of the device with a bias voltage of 100 V does not change significantly during irradiation. When the bias voltage is 200 V, the gate leakage and the drain leakage of the device both increase, so do they when the bias voltage is 300 V, which is positively related to bias voltage. In order to further analyze the single particle effect mechanism of device, the simulation is conducted by using TCAD tool. The simulation results show that at low bias voltage, the heavy ion incident device generates electron-hole pairs, the electrons are quickly swept out, and the holes accumulate at the gate oxygen corner under the effect of the electric field, which combines the source-drain bias voltage, leading to the formation of leakage current channels in the gate oxygen layer. The simulation results also show that at high bias voltage, the electrons generated by the incident heavy ion move towards the junction of the N drift layer and the N+ substrate under the effect of the electric field, which further increases the electric field strength and causes significant impact ionization. The local high current density generated by the impact ionization and the load large electric field causes the lattice temperature to exceed the melting point of silicon carbide, causing single event burnout. This work provides a reference and support for studying the radiation effect mechanism and putting silicon carbide power devices into aerospace applications.
      通信作者: 郭红霞, guohongxia@nint.ac.cn
      Corresponding author: Guo Hong-Xia, guohongxia@nint.ac.cn
    [1]

    Dimitrijev S, Jamet P 2003 Microelectron. Reliab. 43 225Google Scholar

    [2]

    Zeng Z, Zhang X, Miao L J 2019 10th International Conference on Power Electronics and ECCE Asia Busan, Korea, May 27–30, 2019 p2139

    [3]

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551 [张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 551Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551Google Scholar

    [4]

    Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313 [刘新宇, 李诚瞻, 罗烨辉, 陈宏, 高秀秀, 白云 2020 电子学报 48 2313Google Scholar

    Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313Google Scholar

    [5]

    Wang J, Zhao T F, Li J, Huang A Q, Callanan R, Husna F, Agarwal A 2008 IEEE Trans. Electron. Dev. 55 1798Google Scholar

    [6]

    Liu J W, Lu J, Tian X L, Chen H, Bai Y, Liu X Y 2020 Electron. Lett. 56 1273Google Scholar

    [7]

    Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar

    [8]

    Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423Google Scholar

    [9]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar

    [10]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J-M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar

    [11]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [12]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430Google Scholar

    [13]

    Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3 [刘翠翠, 郭刚, 李治明, 张付强, 陈启明, 韩金华, 杨新宇 2022 核技术 45 3Google Scholar

    Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3Google Scholar

    [14]

    Pappis D, Zacharias P 2017 19th European Conference on Power Electronics and Applications Warsaw, Poland, September 11–14, 2017 p1

    [15]

    Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021 Electr. Eng. Jpn. 214 e23323Google Scholar

    [16]

    Sampath M, Morisette D T, Cooper J A 2018 Mater. Sci. Forum 924 752Google Scholar

    [17]

    顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2011 物理学报 70 166101Google Scholar

    Gu C Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 2011 Acta Phys. Sin. 70 166101Google Scholar

    [18]

    Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H Y 2019 IEEE Trans. Nucl. Sci. 66 2312Google Scholar

    [19]

    Wang L H, Jia Y P, Zhou X T, Zhao Y F, Wang L, Li T D, Hu D Q, Wu Y, Deng Z H 2022 Microelectron. Reliab. 137 114770Google Scholar

    [20]

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466Google Scholar

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466Google Scholar

    [21]

    唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402Google Scholar

    Tang C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402Google Scholar

    [22]

    王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078Google Scholar

    Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078Google Scholar

    [23]

    Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y, Tang Y, Xia T, Gong H, Zhao Y F 2020 IEEE Trans. Electron. Dev. 67 582Google Scholar

    [24]

    Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y , Zhang S D, Li Y, Li X Y, Wang L H, Fang X Y, Zhao Y F 2021 IEEE Trans. Electron. Dev. 68 4010Google Scholar

    [25]

    Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [程有忠 2021 硕士 (杭州电子科技大学)

    Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University)

    [26]

    Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H, Cao F 2019 IEEE Trans. Electron. Dev. 66 4264Google Scholar

  • 图 1  (a) SiC DTMOSFET单胞结构图; (b) 重离子实验电路原理图

    Fig. 1.  (a) SiC MOSFET cell structure; (b) schematic diagram of heavy ion experiment.

    图 2  辐照过程 (a) 漏极电流监测; (b) 烧毁电流监测; (c) 脉冲电流

    Fig. 2.  During irradiation: (a) Leakage current monitoring; (b) burn-out current monitoring; (c) pulse current monitoring.

    图 3  辐照前后SiC MOSFET转移特征曲线和输出特征曲线

    Fig. 3.  Transfer characteristic curve and output characteristic curve of SiC MOSFET before and after irradiation.

    图 4  辐照后 (a)栅极泄漏电流特性; (b)漏极泄漏电流特性

    Fig. 4.  After irradiation: (a) Gate leakage currents characteristics; (b) drain leakage currents characteristics.

    图 5  离子入射位置示意图

    Fig. 5.  Diagram of ion strike positions.

    图 6  VDSirr = 200 V时, 不同位置入射器件最大栅氧化层电场强度随时间的演化过程

    Fig. 6.  Evolution of maximum oxide electricfield at different strike positions with simulation time at VDSirr = 200 V.

    图 7  VDSirr = 200 V时, 重离子入射器件栅氧化层中电场强度分布图

    Fig. 7.  The distribution of electric field in gate oxide under heavy ion strike at VDSirr = 200 V.

    图 8  重离子入射 (a) 1 ps, (b) 10 ps, (c) 100 ps和(d) 1 ns后器件内部晶格温度分布图

    Fig. 8.  The distribution of lattice temperature in device after heavy ion incident of (a) 1 ps, (b) 10 ps, (c) 100 ps, and (d) 1 ns.

    图 9  沿离子入射路径电场强度和碰撞电离率的分布情况

    Fig. 9.  Evolutions of impact ionization and electronic indensity along the ion track.

    表 1  辐照前后SiC MOSFET阈值电压偏移量和电流变化量

    Table 1.  Threshold voltage offset and current change of SiC MOSFET before and after irradiation.

    辐照过程中初始偏置条件 ΔVth/V ΔId/mA
    100 V –0.06 77.51
    200 V –0.09 78.73
    300 V –0.16 80.56
    下载: 导出CSV
  • [1]

    Dimitrijev S, Jamet P 2003 Microelectron. Reliab. 43 225Google Scholar

    [2]

    Zeng Z, Zhang X, Miao L J 2019 10th International Conference on Power Electronics and ECCE Asia Busan, Korea, May 27–30, 2019 p2139

    [3]

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551 [张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 551Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551Google Scholar

    [4]

    Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313 [刘新宇, 李诚瞻, 罗烨辉, 陈宏, 高秀秀, 白云 2020 电子学报 48 2313Google Scholar

    Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313Google Scholar

    [5]

    Wang J, Zhao T F, Li J, Huang A Q, Callanan R, Husna F, Agarwal A 2008 IEEE Trans. Electron. Dev. 55 1798Google Scholar

    [6]

    Liu J W, Lu J, Tian X L, Chen H, Bai Y, Liu X Y 2020 Electron. Lett. 56 1273Google Scholar

    [7]

    Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar

    [8]

    Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423Google Scholar

    [9]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar

    [10]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J-M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar

    [11]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [12]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430Google Scholar

    [13]

    Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3 [刘翠翠, 郭刚, 李治明, 张付强, 陈启明, 韩金华, 杨新宇 2022 核技术 45 3Google Scholar

    Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3Google Scholar

    [14]

    Pappis D, Zacharias P 2017 19th European Conference on Power Electronics and Applications Warsaw, Poland, September 11–14, 2017 p1

    [15]

    Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021 Electr. Eng. Jpn. 214 e23323Google Scholar

    [16]

    Sampath M, Morisette D T, Cooper J A 2018 Mater. Sci. Forum 924 752Google Scholar

    [17]

    顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2011 物理学报 70 166101Google Scholar

    Gu C Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 2011 Acta Phys. Sin. 70 166101Google Scholar

    [18]

    Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H Y 2019 IEEE Trans. Nucl. Sci. 66 2312Google Scholar

    [19]

    Wang L H, Jia Y P, Zhou X T, Zhao Y F, Wang L, Li T D, Hu D Q, Wu Y, Deng Z H 2022 Microelectron. Reliab. 137 114770Google Scholar

    [20]

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466Google Scholar

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466Google Scholar

    [21]

    唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402Google Scholar

    Tang C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402Google Scholar

    [22]

    王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078Google Scholar

    Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078Google Scholar

    [23]

    Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y, Tang Y, Xia T, Gong H, Zhao Y F 2020 IEEE Trans. Electron. Dev. 67 582Google Scholar

    [24]

    Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y , Zhang S D, Li Y, Li X Y, Wang L H, Fang X Y, Zhao Y F 2021 IEEE Trans. Electron. Dev. 68 4010Google Scholar

    [25]

    Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [程有忠 2021 硕士 (杭州电子科技大学)

    Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University)

    [26]

    Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H, Cao F 2019 IEEE Trans. Electron. Dev. 66 4264Google Scholar

  • [1] 彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云. 重离子辐照导致的SiC肖特基势垒二极管损伤机理. 物理学报, 2022, 71(17): 176101. doi: 10.7498/aps.71.20220628
    [2] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究. 物理学报, 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [3] 王烈林, 李江博, 谢华, 邓司浩, 张可心, 易发成. 铀在Nd2Zr2O7烧绿石中的固溶量及重离子辐照效应. 物理学报, 2018, 67(19): 192801. doi: 10.7498/aps.67.20181204
    [4] 丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南. 高能重离子辐照的低活化钢硬化效应. 物理学报, 2017, 66(11): 112501. doi: 10.7498/aps.66.112501
    [5] 郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣. 射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响. 物理学报, 2017, 66(7): 076101. doi: 10.7498/aps.66.076101
    [6] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型. 物理学报, 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [7] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响. 物理学报, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [8] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究. 物理学报, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [9] 辛艳辉, 刘红侠, 王树龙, 范小娇. 堆叠栅介质对称双栅单Halo应变Si金属氧化物半导体场效应管二维模型. 物理学报, 2014, 63(24): 248502. doi: 10.7498/aps.63.248502
    [10] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 宋建军, 周春宇, 李妤晨. 应变SiGe p 型金属氧化物半导体场效应管栅电容特性研究. 物理学报, 2013, 62(12): 127102. doi: 10.7498/aps.62.127102
    [11] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [12] 孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究. 物理学报, 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [13] 孙鹏, 杜磊, 陈文豪, 何亮. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管潜在缺陷退化模型. 物理学报, 2012, 61(6): 067801. doi: 10.7498/aps.61.067801
    [14] 陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百. p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响. 物理学报, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [15] 刘宇安, 杜 磊, 包军林. 金属氧化物半导体场效应管热载流子退化的1/fγ噪声相关性研究. 物理学报, 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
    [16] 彭绍泉, 杜 磊, 庄奕琪, 包军林, 何 亮, 陈伟华. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管辐照退化模型. 物理学报, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [17] 宋 银, 王志光, 魏孔芳, 张崇宏, 刘纯宝, 臧 航, 周丽宏. 退火对He注入及随后208Pb27+辐照的Al2O3单晶PL谱的影响. 物理学报, 2007, 56(1): 551-555. doi: 10.7498/aps.56.551
    [18] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件. 物理学报, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [19] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
    [20] 王剑屏, 徐娜军, 张廷庆, 汤华莲, 刘家璐, 刘传洋, 姚育娟, 彭宏论, 何宝平, 张正选. 金属-氧化物-半导体器件γ辐照温度效应. 物理学报, 2000, 49(7): 1331-1334. doi: 10.7498/aps.49.1331
计量
  • 文章访问数:  2383
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2023-09-26
  • 上网日期:  2024-01-10
  • 刊出日期:  2024-01-20

/

返回文章
返回