-
本文针对第四代双沟槽型碳化硅场效应晶体管开展了不同源漏偏置电压下208 MeV锗离子辐照实验, 分析了器件产生单粒子效应的物理机制. 实验结果表明, 辐照过程中随着初始偏置电压的增大, 器件漏极电流增长更明显; 在偏置电压为400 V时, 重离子注量达到9×104 ion/cm2, 器件发生单粒子烧毁, 在偏置电压为500 V时, 重离子注量达到3×104 ion/cm2, 器件发生单粒子烧毁, 单粒子烧毁阈值电压在器件额定工作电压的34% (400 V)以下. 对辐照后器件进行栅特性测试, 辐照过程中偏置电压为100 V的器件泄漏电流无明显变化; 200 V和300 V时, 器件的栅极泄漏电流和漏极泄漏电流都增大. 结合TCAD仿真模拟进一步分析器件单粒子效应微观机制, 结果表明在低偏压下, 泄漏电流增大是因为电场集中在栅氧化层的拐角处, 导致了氧化层的损伤; 在高偏压下, 辐照过程中N–外延层和N+衬底交界处发生的电场强度增大, 引起显著的碰撞电离, 由碰撞电离产生的局域大电流密度导致晶格温度超过碳化硅的熔点, 最终引起单粒子烧毁.
-
关键词:
- 双沟槽SiC 金属-氧化物-半导体型场效应管 /
- 重离子辐照 /
- 单粒子烧毁
In this paper, experiments on 208 MeV Ge ion irradiation with different source-drain bias voltages are carried out for the double-trench SiC metal–oxide–semiconductor field-effect transistors, and the physical mechanism of the single event effect is analyzed. The experimental results show that the drain leakage current of the device increases more obviously with the increase of the initial bias voltage during irradiation. When the bias voltage is 400 V during irradiation, the device has a single event burned at a fluence of 9×104 ion/cm2, and when the bias voltage is 500 V, the device has a single event burned at a fluence of 3×104 ion/cm2, so when the LET value is 37.3 MeV·cm2/mg, the SEB threshold of DUT does not exceed 400 V, which is lower than 34% of the rated operational voltage. The post gate-characteristics test results show that the leakage current of the device with a bias voltage of 100 V does not change significantly during irradiation. When the bias voltage is 200 V, the gate leakage and the drain leakage of the device both increase, so do they when the bias voltage is 300 V, which is positively related to bias voltage. In order to further analyze the single particle effect mechanism of device, the simulation is conducted by using TCAD tool. The simulation results show that at low bias voltage, the heavy ion incident device generates electron-hole pairs, the electrons are quickly swept out, and the holes accumulate at the gate oxygen corner under the effect of the electric field, which combines the source-drain bias voltage, leading to the formation of leakage current channels in the gate oxygen layer. The simulation results also show that at high bias voltage, the electrons generated by the incident heavy ion move towards the junction of the N– drift layer and the N+ substrate under the effect of the electric field, which further increases the electric field strength and causes significant impact ionization. The local high current density generated by the impact ionization and the load large electric field causes the lattice temperature to exceed the melting point of silicon carbide, causing single event burnout. This work provides a reference and support for studying the radiation effect mechanism and putting silicon carbide power devices into aerospace applications.-
Keywords:
- SiC double-trench metal-oxide-semiconductor field-effect transistors /
- heavy ion irradiation /
- single event burnout
[1] Dimitrijev S, Jamet P 2003 Microelectron. Reliab. 43 225Google Scholar
[2] Zeng Z, Zhang X, Miao L J 2019 10th International Conference on Power Electronics and ECCE Asia Busan, Korea, May 27–30, 2019 p2139
[3] Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551 [张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 551Google Scholar
Google ScholarZhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin.60 551 [4] Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313 [刘新宇, 李诚瞻, 罗烨辉, 陈宏, 高秀秀, 白云 2020 电子学报 48 2313Google Scholar
Google ScholarLiu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin.48 2313 [5] Wang J, Zhao T F, Li J, Huang A Q, Callanan R, Husna F, Agarwal A 2008 IEEE Trans. Electron. Dev. 55 1798Google Scholar
[6] Liu J W, Lu J, Tian X L, Chen H, Bai Y, Liu X Y 2020 Electron. Lett. 56 1273Google Scholar
[7] Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar
[8] Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423Google Scholar
[9] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar
[10] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J-M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar
[11] Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar
[12] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430Google Scholar
[13] Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3 [刘翠翠, 郭刚, 李治明, 张付强, 陈启明, 韩金华, 杨新宇 2022 核技术 45 3Google Scholar
Google ScholarLiu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech.45 3 [14] Pappis D, Zacharias P 2017 19th European Conference on Power Electronics and Applications Warsaw, Poland, September 11–14, 2017 p1
[15] Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021 Electr. Eng. Jpn. 214 e23323Google Scholar
[16] Sampath M, Morisette D T, Cooper J A 2018 Mater. Sci. Forum 924 752Google Scholar
[17] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2011 物理学报 70 166101Google Scholar
Gu C Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 2011 Acta Phys. Sin. 70 166101Google Scholar
[18] Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H Y 2019 IEEE Trans. Nucl. Sci. 66 2312Google Scholar
[19] Wang L H, Jia Y P, Zhou X T, Zhao Y F, Wang L, Li T D, Hu D Q, Wu Y, Deng Z H 2022 Microelectron. Reliab. 137 114770Google Scholar
[20] Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466Google Scholar
Google ScholarCheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics52 466 [21] 唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402Google Scholar
Tang C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402Google Scholar
[22] 王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078Google Scholar
Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078Google Scholar
[23] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y, Tang Y, Xia T, Gong H, Zhao Y F 2020 IEEE Trans. Electron. Dev. 67 582Google Scholar
[24] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y , Zhang S D, Li Y, Li X Y, Wang L H, Fang X Y, Zhao Y F 2021 IEEE Trans. Electron. Dev. 68 4010Google Scholar
[25] Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [程有忠 2021 硕士 (杭州电子科技大学)
Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [26] Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H, Cao F 2019 IEEE Trans. Electron. Dev. 66 4264Google Scholar
-
表 1 辐照前后SiC MOSFET阈值电压偏移量和电流变化量
Table 1. Threshold voltage offset and current change of SiC MOSFET before and after irradiation.
辐照过程中初始偏置条件 ΔVth/V ΔId/mA 100 V –0.06 77.51 200 V –0.09 78.73 300 V –0.16 80.56 -
[1] Dimitrijev S, Jamet P 2003 Microelectron. Reliab. 43 225Google Scholar
[2] Zeng Z, Zhang X, Miao L J 2019 10th International Conference on Power Electronics and ECCE Asia Busan, Korea, May 27–30, 2019 p2139
[3] Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551 [张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 551Google Scholar
Google ScholarZhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin.60 551 [4] Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313 [刘新宇, 李诚瞻, 罗烨辉, 陈宏, 高秀秀, 白云 2020 电子学报 48 2313Google Scholar
Google ScholarLiu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin.48 2313 [5] Wang J, Zhao T F, Li J, Huang A Q, Callanan R, Husna F, Agarwal A 2008 IEEE Trans. Electron. Dev. 55 1798Google Scholar
[6] Liu J W, Lu J, Tian X L, Chen H, Bai Y, Liu X Y 2020 Electron. Lett. 56 1273Google Scholar
[7] Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar
[8] Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423Google Scholar
[9] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar
[10] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J-M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar
[11] Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar
[12] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430Google Scholar
[13] Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3 [刘翠翠, 郭刚, 李治明, 张付强, 陈启明, 韩金华, 杨新宇 2022 核技术 45 3Google Scholar
Google ScholarLiu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech.45 3 [14] Pappis D, Zacharias P 2017 19th European Conference on Power Electronics and Applications Warsaw, Poland, September 11–14, 2017 p1
[15] Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021 Electr. Eng. Jpn. 214 e23323Google Scholar
[16] Sampath M, Morisette D T, Cooper J A 2018 Mater. Sci. Forum 924 752Google Scholar
[17] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2011 物理学报 70 166101Google Scholar
Gu C Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 2011 Acta Phys. Sin. 70 166101Google Scholar
[18] Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H Y 2019 IEEE Trans. Nucl. Sci. 66 2312Google Scholar
[19] Wang L H, Jia Y P, Zhou X T, Zhao Y F, Wang L, Li T D, Hu D Q, Wu Y, Deng Z H 2022 Microelectron. Reliab. 137 114770Google Scholar
[20] Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466Google Scholar
Google ScholarCheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics52 466 [21] 唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402Google Scholar
Tang C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402Google Scholar
[22] 王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078Google Scholar
Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078Google Scholar
[23] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y, Tang Y, Xia T, Gong H, Zhao Y F 2020 IEEE Trans. Electron. Dev. 67 582Google Scholar
[24] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y , Zhang S D, Li Y, Li X Y, Wang L H, Fang X Y, Zhao Y F 2021 IEEE Trans. Electron. Dev. 68 4010Google Scholar
[25] Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [程有忠 2021 硕士 (杭州电子科技大学)
Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [26] Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H, Cao F 2019 IEEE Trans. Electron. Dev. 66 4264Google Scholar
计量
- 文章访问数: 2121
- PDF下载量: 90
- 被引次数: 0