搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近地轨道质子和α粒子入射InP产生的位移损伤模拟

白雨蓉 李培 何欢 刘方 李薇 贺朝会

引用本文:
Citation:

近地轨道质子和α粒子入射InP产生的位移损伤模拟

白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会

Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit

Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui
PDF
HTML
导出引用
  • 磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点, 是制备航天器电子器件的优良材料. 近地轨道内的质子和α粒子对近地卫星威胁巨大, 其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素. 本文使用蒙特卡罗软件Geant4研究近地轨道的质子与α粒子分别经过150 μm 二氧化硅和2.54 mm 铝层屏蔽后, 在500/1000/5000 μm InP材料中产生的非电离能量损失(non-ionizing energy loss, NIEL)、平均非电离损伤能随深度分布以及年总非电离损伤能. 研究发现: 低能质子射程短且较易发生非电离反应, 入射粒子能谱中低能粒子占比越大, 材料厚度越小, NIEL值越大; 计算质子和α粒子年总非电离损伤能, 质子的年总非电离损伤能占比达98%, 表明质子是近地轨道内产生位移损伤的主要因素; α粒子年总非电离损伤能占比小, 但其在InP中的NIEL约为质子的2—10倍, 应关注α粒子在InP中产生的单粒子位移损伤效应. 本文计算为InP材料在空间辐射环境的应用提供了参考依据.
    Indium phosphide (InP) material hasmany advantages, such as large band gap, high electron mobility, high photoelectric conversion efficiency, high temperature resistance, and radiation resistance, which is superior to silicon (Si) and gallium arsenide (GaAs). Meanwhile InP is widely used in optical communication, high-frequency millimeter waves, optoelectronic integrated circuits, satellite communication, space solar cells, and other fields. Radiation particles incident on InP device can generate displacement atoms inside the device through elastic processes. And these displacement atoms continue cascade collisions to generate lattice defects which are vacancies, interstitials, and clusters. These defects capture electrons-holes by defective energy levels in the energy band, and then resulting in a decrease in the life of minority carriers which is the reason of degradation of InP devices. The process of degradation of InP device, induced by lattice defects from ion-irradiation, is called displacement damage effect (DDE). The non-ionizing loss energy (NIEL) scaling is a useful method to predict the degradation of device caused by DDE of radiation particles. Many studies have shown that the NIEL is linearly related to the damage coefficient of InP device. Previous studies of radiation damage effect of InP device mainly focused on single-energy protons, electrons, and neutrons. Of the particles in low earth orbit (LEO),the vast majority of particles are protons, with a few being α particles and electrons, while the electron’s NIEL is too small and its DDE is negligible. The InP’s NIEL induced by proton and α energy in LEO has not been studied in detail. Therefore, this paper uses Monte Carlo software Geant4 to study the NIEL, damage energy distribution with depth, and annual total non-ionization loss energy generated by protons and α particles in LEO in 500/1000/5000 μm InP materials. The shielding of 150-μm-thick SiO2 layer and 2.54-mm-thick Al layer from protons and α particles are used as InP solar cell and InP devices in spacecraft, respectively. It is found that the energy spectrum determines the non-ionizing damage energy $ {T}_{\text{dam}} $ distribution, and then influences the NIEL value: the NIEL value increases with $ {T}_{\text{dam}} $ increasing and thickness of InP material decreasing. And α NIEL is larger than proton’s, the single particle DDE of InP device, induced by α particles, should be concerned. The annual non-ionizing damage energy of proton accounts for 98%, which means that proton is the main factor degrading InP devices in LEO.
      通信作者: 李培, lipei0916@xjtu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11975179) 资助的课题.
      Corresponding author: Li Pei, lipei0916@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975179).
    [1]

    Sun S X, Ji H F, Yao H J, Li S, Jin Z, Ding P, Zhong Y H 2016 Chin. Phys. B 25 4Google Scholar

    [2]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [3]

    Yamaguchi M, Takamoto T, Taylor S J, Walters R J, Summers G P, Flood D J, Ohmori M 1997 J. Appl. Phys. 81 6013Google Scholar

    [4]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [5]

    Jay A, Hemeryck A, Richard N, Martin-Samos L, Raine M, Le Roch A, Mousseau N, Goiffon V, Paillet P, Gaillardin M, Magnan P 2018 IEEE Trans. Nucl. Sci. 65 724Google Scholar

    [6]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [7]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [8]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [9]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [10]

    Li C H, Lu H L, Zhang Y M, Liu M, Zhao X H 2015 IEEE Trans. Nucl. Sci. 62 1336Google Scholar

    [11]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [12]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [13]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [14]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. B 260 529Google Scholar

    [15]

    Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [16]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. A 506 250Google Scholar

    [17]

    Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 IEEE Trans. Nucl. Sci. 70 1885Google Scholar

    [18]

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [19]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Insoo Jun, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [20]

    Dietrich W F, Shea M A, Smart D F 1997 IEEE T. Nucl. Sci. 44 2150Google Scholar

  • 图 1  1—300 MeV质子和α粒子在InP中的NIEL值 (a)质子[15]; (b) α粒子[19]

    Fig. 1.  NIEL of 1—300 MeV protons and α in InP materials: (a) Proton [15]; (b) α[19].

    图 2  InP太阳能电池工况模拟设置图 (a)近地轨道内质子和α粒子能谱; (b) InP太阳能电池模拟结构图, 即500 μm×500 μm区域源离子入射500/1000/5000 μm InP材料(深蓝色)经过150 μm SiO2(浅蓝色)后的示意图

    Fig. 2.  The simulation settings of InP solar cell: (a) Proton and α energy spectrum in low Earth orbit; (b) simulation structure diagram of InP solar cells, the schematic of 500 μm×500 μm area source ion-incident 500/1000/5000 μm InP materials (deep blue) after 150 μm SiO2 (light blue)

    图 3  航天器内部InP电子器件工况模拟设置图 (a)近地轨道内经过2.54 mm铝层屏蔽的质子和α粒子能谱; (b) InP材料模拟结构图, 即500 μm×500 μm区域源离子入射500/1000/5000 μm InP材料

    Fig. 3.  The simulation settings of InP electronics in spacecraft: (a) Proton and α energy spectrum after the shielding of 2.54 mm Al in low Earth orbit; (b) simulation structure diagram of InP solar cells, the schematic of 500 μm×500 μm area source ion-incident 500/1000/5000 μm InP materials.

    图 4  近地轨道内质子和α粒子经过150 μm SiO2屏蔽后入射5000 μm InP中产生的$ {T}_{\text{dam}} $随深度分布, 数值的阴影是通过10次模拟计算得出的标准偏差

    Fig. 4.  The distribution of $ {T}_{\text{dam}} $with depth of 5000 μm InP materials induced by proton and α in low Earth orbit after the shielding of 150 μm SiO2. The shadow of values is standard deviation which is calculated by ten simulations.

    图 5  近地轨道内质子和α粒子经过2.54 mm铝层后在5000 μm InP中产生的$ {T}_{\text{dam}} $随深度分布, 数值的阴影是通过10次模拟计算得出的标准偏差

    Fig. 5.  The distribution of $ {T}_{\text{dam}} $ with depth of 5000 μm InP materials induced by proton and α in low Earth orbit after the shielding of 2.54 mm Al. The shadow of values is standard deviation which is calculated by ten simulations.

    表 1  近地轨道质子及α粒子经过150 μm SiO2后在InP产生的NIEL统计表

    Table 1.  NIEL of InP induced by proton and α in low Earth orbit after the shielding of 150 μm SiO2.

    粒子种类厚度/μmNIEL/(MeV·cm2·g–1)离散系数
    质子5000.002190.01023
    10000.001590.01381
    50000.000750.01017
    α5000.007050.02649
    10000.006970.01609
    50000.006910.00797
    下载: 导出CSV

    表 2  近地轨道质子及α粒子经过2.54 mm 铝层后在InP产生的NIEL统计表

    Table 2.  NIEL of InP induced by proton and α in low Earth orbit after the shielding of 2.54 mm Al.

    粒子种类厚度/μmNIEL/(MeV·cm2·g–1)离散系数
    质子5000.004030.00511
    10000.003870.00554
    50000.003000.00840
    α5000.007040.01135
    10000.007020.00505
    50000.006890.00290
    下载: 导出CSV

    表 3  不同屏蔽材料下近地轨道的质子和α粒子在500 μm InP中产生的年总非电离损伤能汇总

    Table 3.  Annual non-ionizing damage energy and percent of proton and α in low Earth orbit after the shielding of 150 μm SiO2 and 2.54 mm Al in 500 μm InP materials

    屏蔽材料入射粒子粒子数目总非电离损伤能/MeV占比/%
    150 μm SiO2质子5339588626452.0498.73
    α222307339.851.27
    2.54 mm 铝质子9445894586520.4899.58
    α219853365.770.42
    下载: 导出CSV
  • [1]

    Sun S X, Ji H F, Yao H J, Li S, Jin Z, Ding P, Zhong Y H 2016 Chin. Phys. B 25 4Google Scholar

    [2]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [3]

    Yamaguchi M, Takamoto T, Taylor S J, Walters R J, Summers G P, Flood D J, Ohmori M 1997 J. Appl. Phys. 81 6013Google Scholar

    [4]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [5]

    Jay A, Hemeryck A, Richard N, Martin-Samos L, Raine M, Le Roch A, Mousseau N, Goiffon V, Paillet P, Gaillardin M, Magnan P 2018 IEEE Trans. Nucl. Sci. 65 724Google Scholar

    [6]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [7]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [8]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [9]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [10]

    Li C H, Lu H L, Zhang Y M, Liu M, Zhao X H 2015 IEEE Trans. Nucl. Sci. 62 1336Google Scholar

    [11]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [12]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [13]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [14]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. B 260 529Google Scholar

    [15]

    Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [16]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. A 506 250Google Scholar

    [17]

    Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 IEEE Trans. Nucl. Sci. 70 1885Google Scholar

    [18]

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [19]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Insoo Jun, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [20]

    Dietrich W F, Shea M A, Smart D F 1997 IEEE T. Nucl. Sci. 44 2150Google Scholar

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算. 物理学报, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [6] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [7] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [9] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [11] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [12] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [13] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [14] 车驰, 柳青峰, 马晶, 周彦平. 位移效应对量子点激光器的性能影响. 物理学报, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [15] 马晶, 车驰, 韩琦琦, 周彦平, 谭立英. 位移辐射效应对量子阱激光器性能的影响. 物理学报, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [16] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [17] 赵有文, 苗杉杉, 董志远, 吕小红, 邓爱红, 杨 俊, 王 博. 磷化铟中铁原子替位与填隙的热致转变及其对材料性质的影响. 物理学报, 2007, 56(9): 5536-5541. doi: 10.7498/aps.56.5536
    [18] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [20] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
计量
  • 文章访问数:  1844
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2023-11-30
  • 上网日期:  2023-12-08
  • 刊出日期:  2024-03-05

/

返回文章
返回