搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有多MO喷嘴垂直MOCVD反应腔外延层厚度均匀性的优化理论及应用

李建军 崔屿峥 付聪乐 秦晓伟 李雨畅 邓军

引用本文:
Citation:

具有多MO喷嘴垂直MOCVD反应腔外延层厚度均匀性的优化理论及应用

李建军, 崔屿峥, 付聪乐, 秦晓伟, 李雨畅, 邓军

Optimization theory and application of epitaxial layer thickness uniformity in vertical MOCVD reaction chamber with multiple MO nozzles

Li Jian-Jun, Cui Yu-Zheng, Fu Cong-Le, Qin Xiao-Wei, Li Yu-Chang, Deng Jun
PDF
HTML
导出引用
  • 金属有机物化学气相淀积(metal organic chemical vapor deposition, MOCVD)作为异质结半导体材料外延的关键手段, 其外延层厚度均匀性会直接影响产品的良率. 本文将理论与实验相结合, 针对3个MO源喷嘴的垂直反应腔MOCVD, 将各MO源喷嘴等效为蒸发面源, 并引入一等效高度来涵盖MOCVD的相关外延参数, 建立外延层厚度与各MO源喷嘴流量间的定量关系, 设计并利用EMCORE D125 MOCVD系统外延生长了AlGaAs谐振腔结构, 根据实验测得的外延层厚度分布结果, 利用最小二乘法对模型参数进行了拟合提取, 基于提取的模型参数, 给出了优化外延层厚度均匀性的方法. 4 in (1 in = 2.54 cm)外延片mapping反射谱的统计结果为, 腔模的平均波长为651.89 nm, 标准偏差为1.03 nm, 厚度均匀性达到0.16%. 同时外延生长了GaInP 量子阱结构, 4 in外延片mapping荧光光谱的统计结果为, 峰值波长平均值为653.3 nm, 标准偏差仅为0.46 nm, 厚度均匀性达到0.07%. 本文提出的调整外延层厚度均匀性的方法具有简单、有效、快捷的特点, 且可以进一步推广至具有4个MO喷嘴以上的垂直反应腔MOCVD系统.
    Metal organic chemical vapor deposition (MOCVD) is a key means of epitaxy of heterojunction semiconductor material, the uniformity of its epitaxial layer thickness will directly affect the yield of the product, especially the vertical cavity surface emitting device, which has a higher requirement for thickness uniformity. For the multi-MO nozzle vertical reaction cavity MOCVD, this paper combines theory and experiment to give an effective method of improving the epitaxial layer thickness uniformity through adjusting the flow rate of each MO nozzle. Firstly, each MO source nozzle is equivalent to an evaporation surface source, and an equivalent height is introduced to cover the relevant epitaxial parameters of MOCVD and the quantitative relationship between the epitaxial layer thickness and the flow rate of each MO source nozzle is established by taking three MO source nozzles as an example. After that, the model parameters are extracted by fitting through the least squares method based on the experimentally measured epitaxial layer thickness distribution results. Finally, based on the extracted model parameters, a method to optimize the epitaxial layer thickness uniformity is given. Accordingly, the AlGaAs resonant cavity structure, which is easy to accurately test the epitaxial layer thickness, is designed and epitaxially grown by using the EMCORE D125 MOCVD system. The statistical results of the mapping reflection spectra of the 4-inch epitaxial wafers are that the average wavelength of the cavity mode is 651.89 nm, with a standard deviation of 1.03 nm, and thickness uniformity of 0.16% is achieved. At the same time, epitaxial growth of GaInP quantum well structure, 4-inch epitaxial wafers mapping photoluminescence spectrum statistics for the average peak wavelength of 653.3 nm, the standard deviation of only 0.46 nm, and peak wavelength uniformity of 0.07% are achieved. Both the wavelength uniformity of cavity mode and the peak wavelength uniformity of quantum well fully meet the requirements of vertical cavity surface emitting device. The method of adjusting epitaxial layer thickness uniformity proposed in this paper is simple, effective, and fast, and it can be further extended to vertical reaction cavity MOCVD systems with more than four MO nozzles.
      通信作者: 李建军, lijianjun@bjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0209003)和北京市自然科学基金(批准号: 4222060)资助的课题.
      Corresponding author: Li Jian-Jun, lijianjun@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0209003) and the Natural Science Foundation of Beijing, China (Grant No. 4222060).
    [1]

    Manasevit H M 1968 Appl. Phys. Lett. 12 156Google Scholar

    [2]

    陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京: 科学出版社) 第6页

    Lu D C, Duan S K 2009 Fundamentals and Applications of Metal Organic Compound Gas Phase Epitaxy (Beijing: Science Press) p6

    [3]

    Loke W K, Lee K H, Wang Y, Tan C S, Fitzgerald E A, Yoon S F 2018 Semicond. Sci. Technol. 33 115011Google Scholar

    [4]

    Beckers A, Fahle D, Mauder C, Kruecken T, Boyd A R, Heuken M 2018 SID Symposium Digest of Tecnnical Papers 49 601Google Scholar

    [5]

    Monge-Bartolome L, Shi B, Lai B, Boissier G, Cerutti L, Rodriguez J B, Lau K M, TourniéE 2021 Opt. Express 29 11268Google Scholar

    [6]

    Gawron W, Damiecki A, Kozniewski A, Martyniuk P, Stasiewicz K A, Madejczyk P, RutkowskiJ 2021 IEEE Sens. J. 21 4509Google Scholar

    [7]

    Achilli E, Calicchio M, Armani N, Malvisi E, Annoni F, Cornelli M, Trespidi F, Minuto A, Celi E, Abagnale G, Rizzi S, Timò G 2023 J. Cryst. Growth 607 127131Google Scholar

    [8]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [9]

    刘天瑶, 刘灿, 刘开辉 2018 物理学报 71 108103Google Scholar

    Liu T Y, Liu C, Liu K H 2018 Acta Phys. Sin. 71 108103Google Scholar

    [10]

    李建军 2018 物理学报 67 067801Google Scholar

    Li J J 2018 Acta Phys. Sin. 67 067801Google Scholar

    [11]

    周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军 2022 物理学报 71 134204Google Scholar

    Zhou Y L, Jia Y C, Zhang X, Zhang J W, Liu Z C, Ning Y Q, Wang L J 2022 Acta Phys. Sin. 71 134204Google Scholar

    [12]

    Manasreh O 2005 Semiconductor Heterojunctions and Nanostructures (New York: The McGraw-Hill Companies, Inc

    [13]

    Heuken M, Krotkus S, Pasko S, Whear O, Wang X, Connan B, McAleese C 2021 ECS Meeting Abstracts MA2021-02 606Google Scholar

    [14]

    Su J, Armour E, Lee S M, Arif R, Papasouliotis G D 2016 Phys. Status Solidi A 213 856Google Scholar

    [15]

    Paranjpe A, Montgomery J, Lee S, Morath C 2018 SID Symposium Digest of Technical Papers 49 597Google Scholar

    [16]

    Chen R, Li J, Ya X, Deng J, Han J, Luo S, Gao L 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 pp1853–1855

    [17]

    Zheng W, Li J, Chen R, Yang W, Cui B, Han J, Deng J 2011 International Conference on Remote Sensing, Environment and Transportation Engineering Nanjing, China, June 24–29, 2011 pp5821–5823

    [18]

    Holland L, Steckelmacher W 1952 Vacuum 2 346Google Scholar

    [19]

    Angus Macleod H 2010 Thin-Film Optical Filters (Fourth Edition) (Balkema: CRC Press) pp598–600

    [20]

    McKee M A, Norris P E, Stall R A, Tompa G S, Chern C S, Noh D, Kang S S, Jasinski T J 1991 J. Cryst. Growth 107 445Google Scholar

    [21]

    Hartley H O 2012 Technometrics 3 269Google Scholar

  • 图 1  一种多个Ⅲ族MO喷嘴垂直MOCVD反应腔的简化模型

    Fig. 1.  Simplified chamber model of the vertical MOCVD reactor with multiple group III MO injectors.

    图 2  对应于每个MO喷嘴的相对外延层厚度

    Fig. 2.  Relative epitaxial layer thickness corresponding to each MO injector.

    图 3  Bragg cavity#20-2样品的反射谱结果 (a) 外延片中心点的反射光谱; (b) 腔模波长的mapping结果; (c) 整个外延片腔模波长的统计结果

    Fig. 3.  Reflective spectrum results of Bragg cavity#20-2: (a) Reflective spectrum at wafer center point; (b) mapping results of the cavity wavelength; (c) statistic results of the cavity wavelength for the whole wafer.

    图 4  Bragg cavty#20-2样品的厚度拟合结果

    Fig. 4.  Thickness fitting results of Bragg cavty#20-2.

    图 5  Bragg cavity#22样品的反射谱结果 (a) 腔模波长的mapping结果; (b) 整个外延片腔模波长的统计结果

    Fig. 5.  Reflective spectrum results of Bragg cavity#22: (a) Mapping results of the cavity wavelength; (b) statistic results of the cavity wavelength for the whole wafer.

    图 6  Bragg cavity#23样品的反射谱结果 (a) 腔模波长的mapping结果; (b) 整个外延片腔模波长的统计结果

    Fig. 6.  Reflective spectrum results of Bragg cavity#23: (a) Mapping results of the cavity wavelength; (b) statistic results of the cavity wavelength for the whole wafer.

    图 7  650 nm量子阱外延片中心点的PL谱

    Fig. 7.  PL spectrum of 650 nm QW at wafer center point.

    图 8  RCLED QW#69样品的PL谱 (a)峰值波长的mapping结果; (b) 整个外延片峰值波长的统计结果

    Fig. 8.  PL spectrum results of RCLED QW#69: (a) Mapping results of the peak wavelength; (b) statistic results of the peak wavelength for the whole wafer.

    表 1  EMCORE D125 MOCVD腔室的结构参数

    Table 1.  Structure parameters of the EMCORE D125 MOCVD chamber.

    yin/mmymid/mmyout/mm
    1032.553
    下载: 导出CSV

    表 2  用于确定外延层厚度的谐振腔结构

    Table 2.  Resonant cavity structure to determine the epitaxial layer thickness.

    Name材料厚度
    上DBR10.5×Al0.95G0.05As1/4λ
    Al0.5G0.5As1/4λ
    CavityAl0.95G0.05As1λ
    下DBR10×Al0.5G0.5As1/4λ
    Al0.95G0.05As1/4λ
    GaAs substrate
    下载: 导出CSV

    表 3  典型的外延参数

    Table 3.  Typical epitaxial parameters.

    H2
    /sccm
    AsH3
    /sccm
    V/III
    ratio
    温度
    /℃
    室压
    /Pa
    晶圆载体
    转速/(r⋅m–1)
    20000 100 60—100 600 8000 1000
    下载: 导出CSV

    表 4  典型的外延参数

    Table 4.  Typical epitaxial parameters

    Bragg
    cavity
    #20-2
    Bragg
    cavity
    #22
    Bragg
    cavity
    #23
    MO源
    喷嘴
    Min/sccm 275.5 281.3 281.3
    Mmid/sccm 123.2 125.8 125.8
    Mout/sccm 1101.3 1092.9 1092.9
    腔模
    波长的
    mapping
    结果
    $ {\overline{\lambda }}_{{\mathrm{c}}} $/nm 657.9 681.9 651.9
    σ/nm 3.7 1.52 1.03
    Uniformity/% 0.6 0.2 0.2
    λc(10%)/nm 653 681 651
    λc(90%)/nm 663 683 653
    拟合
    结果
    αin/(nm·sccm–1) 0.891 0.917 0.870
    αmid/(nm·sccm–1) 1.868 1.908 1.839
    αout/(nm·sccm–1) 0.165 0.174 0.165
    heff/mm 30.448 30.748 30.630
    下载: 导出CSV

    表 5  650 nm量子阱外延结构

    Table 5.  Epitaxial structure of 650 nm QW.

    材料 厚度/nm
    GaAs 5
    (Al0.7G0.3)0.5In0.5P 150
    (Al0.5G0.5)0.5In0.5P 35
    G0.5In0.5P 5
    (Al0.5G0.5)0.5In0.5P ×2 5
    G0.5In0.5P ×2 5
    (Al0.5G0.5)0.5In0.5P 35
    (Al0.7G0.3)0.5In0.5P 150
    GaAs substrate
    下载: 导出CSV
  • [1]

    Manasevit H M 1968 Appl. Phys. Lett. 12 156Google Scholar

    [2]

    陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京: 科学出版社) 第6页

    Lu D C, Duan S K 2009 Fundamentals and Applications of Metal Organic Compound Gas Phase Epitaxy (Beijing: Science Press) p6

    [3]

    Loke W K, Lee K H, Wang Y, Tan C S, Fitzgerald E A, Yoon S F 2018 Semicond. Sci. Technol. 33 115011Google Scholar

    [4]

    Beckers A, Fahle D, Mauder C, Kruecken T, Boyd A R, Heuken M 2018 SID Symposium Digest of Tecnnical Papers 49 601Google Scholar

    [5]

    Monge-Bartolome L, Shi B, Lai B, Boissier G, Cerutti L, Rodriguez J B, Lau K M, TourniéE 2021 Opt. Express 29 11268Google Scholar

    [6]

    Gawron W, Damiecki A, Kozniewski A, Martyniuk P, Stasiewicz K A, Madejczyk P, RutkowskiJ 2021 IEEE Sens. J. 21 4509Google Scholar

    [7]

    Achilli E, Calicchio M, Armani N, Malvisi E, Annoni F, Cornelli M, Trespidi F, Minuto A, Celi E, Abagnale G, Rizzi S, Timò G 2023 J. Cryst. Growth 607 127131Google Scholar

    [8]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [9]

    刘天瑶, 刘灿, 刘开辉 2018 物理学报 71 108103Google Scholar

    Liu T Y, Liu C, Liu K H 2018 Acta Phys. Sin. 71 108103Google Scholar

    [10]

    李建军 2018 物理学报 67 067801Google Scholar

    Li J J 2018 Acta Phys. Sin. 67 067801Google Scholar

    [11]

    周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军 2022 物理学报 71 134204Google Scholar

    Zhou Y L, Jia Y C, Zhang X, Zhang J W, Liu Z C, Ning Y Q, Wang L J 2022 Acta Phys. Sin. 71 134204Google Scholar

    [12]

    Manasreh O 2005 Semiconductor Heterojunctions and Nanostructures (New York: The McGraw-Hill Companies, Inc

    [13]

    Heuken M, Krotkus S, Pasko S, Whear O, Wang X, Connan B, McAleese C 2021 ECS Meeting Abstracts MA2021-02 606Google Scholar

    [14]

    Su J, Armour E, Lee S M, Arif R, Papasouliotis G D 2016 Phys. Status Solidi A 213 856Google Scholar

    [15]

    Paranjpe A, Montgomery J, Lee S, Morath C 2018 SID Symposium Digest of Technical Papers 49 597Google Scholar

    [16]

    Chen R, Li J, Ya X, Deng J, Han J, Luo S, Gao L 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 pp1853–1855

    [17]

    Zheng W, Li J, Chen R, Yang W, Cui B, Han J, Deng J 2011 International Conference on Remote Sensing, Environment and Transportation Engineering Nanjing, China, June 24–29, 2011 pp5821–5823

    [18]

    Holland L, Steckelmacher W 1952 Vacuum 2 346Google Scholar

    [19]

    Angus Macleod H 2010 Thin-Film Optical Filters (Fourth Edition) (Balkema: CRC Press) pp598–600

    [20]

    McKee M A, Norris P E, Stall R A, Tompa G S, Chern C S, Noh D, Kang S S, Jasinski T J 1991 J. Cryst. Growth 107 445Google Scholar

    [21]

    Hartley H O 2012 Technometrics 3 269Google Scholar

  • [1] 常超, 寇金宗, 徐小志. 原子台阶调控二维单晶材料生长. 物理学报, 2023, 72(20): 208101. doi: 10.7498/aps.72.20230887
    [2] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [3] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备. 物理学报, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [4] 李忠辉, 罗伟科, 杨乾坤, 李亮, 周建军, 董逊, 彭大青, 张东国, 潘磊, 李传皓. 金属有机物化学气相沉积同质外延GaN薄膜表面形貌的改善. 物理学报, 2017, 66(10): 106101. doi: 10.7498/aps.66.106101
    [5] 王保柱, 张秀清, 张奥迪, 周晓然, Bahadir Kucukgok, Na Lu, 肖红领, 王晓亮, Ian T. Ferguson. 金属有机物化学气相沉积生长GaN薄膜的室温热电特性研究. 物理学报, 2015, 64(4): 047202. doi: 10.7498/aps.64.047202
    [6] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [7] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [8] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] 陈跃宁, 徐征, 赵谡玲, 孙钦军, 尹飞飞, 董宇航. 最小二乘拟合计算有机薄膜晶体管迁移率的研究. 物理学报, 2010, 59(11): 8113-8117. doi: 10.7498/aps.59.8113
    [10] 张营堂, 何萌, 陈子瑜, 吕惠宾. 用激光分子束外延在玻璃衬底上生长La0.67Sr0.33MnO3薄膜. 物理学报, 2009, 58(3): 2002-2004. doi: 10.7498/aps.58.2002
    [11] 刘启佳, 邵勇, 吴真龙, 徐洲, 徐峰, 刘斌, 谢自力, 陈鹏. 生长温度对AlGaInN四元合金薄膜性质的影响. 物理学报, 2009, 58(10): 7194-7198. doi: 10.7498/aps.58.7194
    [12] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [13] 宋禹忻, 俞重远, 刘玉敏. 沉积速率和生长停顿对InAs/GaAs量子点超晶格生长影响的综合分析. 物理学报, 2008, 57(4): 2399-2403. doi: 10.7498/aps.57.2399
    [14] 何 萌, 刘国珍, 仇 杰, 邢 杰, 吕惠宾. 用激光分子束外延在Si衬底上外延生长高质量的TiN薄膜. 物理学报, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [15] 李美亚, 汪 晶, 刘 军, 于本方, 郭冬云, 赵兴中. YBa2Cu3O7-x涂层导体的外延生长和性能对CeO2缓冲层的依赖性. 物理学报, 2008, 57(5): 3132-3137. doi: 10.7498/aps.57.3132
    [16] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [17] 陈敦军, 沈 波, 张开骁, 邓咏桢, 范 杰, 张 荣, 施 毅, 郑有炓. GaN1-xPx薄膜的结构特性研究. 物理学报, 2003, 52(7): 1788-1791. doi: 10.7498/aps.52.1788
    [18] 劳技军, 胡晓萍, 虞晓江, 李戈扬, 顾明元. AlN在AlN/VN纳米多层膜中的相转变及其对薄膜力学性能的影响. 物理学报, 2003, 52(9): 2259-2263. doi: 10.7498/aps.52.2259
    [19] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [20] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟. 物理学报, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
计量
  • 文章访问数:  2040
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-23
  • 修回日期:  2023-10-31
  • 上网日期:  2023-11-24
  • 刊出日期:  2024-02-20

/

返回文章
返回