搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双谐振环金属超表面中的连续域束缚态

王玥 王豪杰 崔子健 张达篪

引用本文:
Citation:

双谐振环金属超表面中的连续域束缚态

王玥, 王豪杰, 崔子健, 张达篪

Bound states in continuum domain of double resonant ring metal metasurfaces

Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi
PDF
HTML
导出引用
  • 超表面由于具备独特的电磁响应特性, 在微波、太赫兹以及光学领域的应用十分广泛. 在电磁超表面中构建连续域束缚态(bound states in the continuum, BIC)模式谐振可以产生尖锐的谐振透射峰, 因此BIC被广泛用于设计具有高品质因子谐振的超表面. 本文实验研究了一种支持准 BIC (quasi-BIC, q-BIC)谐振的新型金属太赫兹超表面, 通过设计两组金属开口谐振环(split ring resonators, SRRs)的结构参数来调节各自主导的谐振的工作频率, 使不同模式谐振之间产生耦合, 形成q-BIC模式谐振. 并利用电磁场分布及其散射功率的多极分解的计算结果证明了不同模式的共振机制. 在入射电磁波分别沿x, y偏振时, 通过Jaynes-Cummings模型计算了两模式之间的归一化耦合强度比, 分别为0.54% (x偏振)与4.42% (y偏振), 解释了不同谐振模式的工作频率随SRRs器件结构参数改变而变化的规律.
    Metasurfaces have found extensive applications in microwave, terahertz, and optical range, serving different purposes such as filters, sensors, slow light devices, and nonlinear devices due to their distinctive electromagnetic response characteristics. Recent development requires metasurface devices to exhibit enhanced monochromaticity and stronger light interaction. Consequently, there is a growing interest in designing metasurfaces with high-quality factor (Q-factor) resonances, considering their crucial role in achieving sharp resonances through constructing bound states in the continuum (BIC) mode. The utilization of BIC has emerged as a prominent method of designing metasurfaces with high Q-factor resonances. Due to the fact that the changes in the structural parameters of metasurfaces can simultaneously affect the resonance of two components of q-BICs, it is difficult to achieve on-demand design of operating frequency, bandwidth, and Q-factor. In this work, we investigate a novel THz metasurfaces supporting q-BIC resonance. We optimize the geometric parameters of two split ring resonators (SRRs) to tailor the operating frequencies of intrinsic resonance, and tune the coupling between different resonance modes to form the q-BIC mode resonance. The dominant modes are demonstrated by the results of multipolar decomposition calculations of the electromagnetic field distributions and scattered power at different resonant operating frequencies. In x-polarized and y-polarized incident electromagnetic wave, the normalized coupling strength ratio between the two modes are calculated by Jaynes-Cummings model to be 0.54% (x-polarized) and 4.42% (y-polarized) respectively, which explains the law that the resonant frequency of different modes changes with the structural parameters of SRRs device. In order to analyze the refractive index sensing capabilities of our designed metasurfaces under the incident electromagnetic waves with different polarizations, we investigate the variations of the transmitted spectrum of the metasurface with refractive index of matters. The calculated results show that the sensitivity of the metasurface is 151 GHz/RIU when the incident wave is y-polarized and 108 GHz/RIU when the incident wave is x-polarized. We realize the effective control of the operating frequency, bandwidth, and Q-factor of the q-BIC mode resonance in the transmission spectrum of the metasurface, which provides a new idea for the practical designing of terahertz metasurfaces with high Q-factor.
      通信作者: 王玥, wangyue2017@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62275215)、陕西省青年创新团队建设项目(批准号: 21JP084)、西安市科技局重点产业链关键核心技术攻关项目(批准号: 23LLRH0057)和陕西省重点研发计划(批准号: 2023GXLH-038) 资助的课题.
      Corresponding author: Wang Yue, wangyue2017@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62275215), the Youth Innovation Team of Shaanxi Universities, China (Grant No. 21JP084), the Key Core Technology Research Project for Strategic Industry Chains of Xi’an Science and Technology Bureau, China (Grant No. 23LLRH0057), and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2023GXLH-038).
    [1]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048Google Scholar

    [2]

    von Neumann J, Wigner E P 1929 Physics Z 30 467

    [3]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510Google Scholar

    [4]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [5]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljacic M 2013 Nature 499 188Google Scholar

    [6]

    Urseel F 1997 Phys. Eng. Sci. 435 575

    [7]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [8]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [9]

    Retzler C H 2001 Appl. Ocean Res. 23 249Google Scholar

    [10]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2009 Europhys. Lett. 88 20006Google Scholar

    [11]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2011 J. Fluid Mech. 666 445Google Scholar

    [12]

    Fang C, Yang Q, Yuan Q, Gan X, Zhao J, Shao Y, Liu Y, Han G, Hao Y 2021 Opto-Electron. Adv. 4 200030Google Scholar

    [13]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [14]

    Feshbach H 1958 Ann. Phys. 5 357Google Scholar

    [15]

    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D Y, Neshev D N, Kivshar Y S, Altug H 2018 Science 360 1105Google Scholar

    [16]

    Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246Google Scholar

    [17]

    Chen X, Fan W 2019 Opt. Lett. 44 5876Google Scholar

    [18]

    Srivastava Y K, Ako T R, Gupta M, Bhaskaran M, Sriram S, Singh R, T 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [19]

    Wang Y L, Han Z H, Du Y, Qin J Y 2021 Nanophotonics 10 1295Google Scholar

    [20]

    Yue L S, Wang Y, Cui Z J, Zhang X J, Zhu Y Q, Zhang X, Chen S G, Wang X M, Zhang K 2021 Opt. Express 29 13563Google Scholar

    [21]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [22]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [23]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [24]

    Chen S S, Zhang W X, Yang B, Wu T, Zhang X D 2019 Sci. Rep. 9 5551Google Scholar

    [25]

    杜芊, 陈溢杭 2021 物理学报 70 154206Google Scholar

    Du Q, Chen Y H 2021 Acta Phys. Sin. 70 154206Google Scholar

    [26]

    Zhou C B, Huang L J, Jin R, Xu L, Li G H, Mohsen R, Chan X S, Lu W 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [27]

    Qin H Y, Su Z P, Liu M Q, Zeng Y X, Tang M C, Li M Y, Shi Y Z, Huang W, Qiu C W, Song Q H 2023 Light Sci. Appl. 12 66Google Scholar

    [28]

    Li H J, Zhou H M, Wei G G, Xu H S, Qin M, Liu J Q, Wu F 2023 Nanoscale 15 6636Google Scholar

    [29]

    Romano S, Zito G, Torino S 2018 Photonics Res. 6 726Google Scholar

    [30]

    Zhou Y, Zheng H Y, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316Google Scholar

    [31]

    Azzam S I, Shalaev V M, Boltasseva A, Kildishev A V 2018 Phys. Rev. Lett. 121 253901Google Scholar

    [32]

    Savinov V, Fedotov V A, Zheludev N I 2014 Phys. Rev. B 89 205112Google Scholar

    [33]

    Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [34]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [35]

    Ho L, Pepper M, Taday P 2008 Nat. Photonics 2 541Google Scholar

  • 图 1  (a) 金属太赫兹超表面阵列单元几何结构示意图; (b) 超表面子单元; (c) 超表面样品光学照片; (d) 超表面显微照片

    Fig. 1.  (a) Geometry diagram of metal THz metasurface array cells; (b) metasurface subunits; (c) metasurface sample photographs; (d) metasurface micrographs.

    图 2  入射电磁波沿y偏振 (a) q-BIC模式谐振时的透射谱(d = 10 μm), Mode 1的电场分布(c)和表面电流分布(f); Mode 2的电场分布(d)和表面电流分布(g); (b) BIC模式谐振时的透射谱(d = 30 μm), BIC的电场分布(e)和表面电流分布(h)

    Fig. 2.  y-polarized: (a) Transmission spectrum at q-BIC mode resonance (d = 10 μm), electric field distribution in Mode 1 (c) and surface current distribution (f); the electric field distribution (d) and surface current distribution (g) of Mode 2; (b) transmission spectrum at BIC mode resonance (d = 30 μm), electric field distribution (e) and surface current distribution (h) of BIC.

    图 3  入射电磁波沿x偏振 (a) q-BIC 模式谐振时的透射谱 (n=20 μm), Mode 3 处的电场分布(c)和表面电流分布(f), Mode 4处的电场分布(d)和表面电流分布(g); (b) BIC模式谐振时的透射谱(n=14.6 μm); Mode BIC处的电场分布(e)和表面电流分布(h)

    Fig. 3.  x-polarized: (a) Transmission spectrum at q-BIC mode resonance (n=20 μm), electric field distribution (c) and surface current distribution (f) at Mode 3, electric field distribution (d) and surface current distribution (g) at Mode 4; (b) transmission spectrum at BIC mode resonance (n = 14.6 μm); electric field distribution (e) and surface current distribution (h) at Mode BIC.

    图 4  当入射电磁波沿y (a), x (b)偏振时的多极分解结果. MQ, EQ, TD, MD和ED分别表示磁四极子、电四极子、环偶极子、磁偶极子和电偶极子

    Fig. 4.  Multipole decomposition results during irradiation of y-polarized (a) and x-polarized (b) waves: MQ, EQ, TD, MD and ED represent magnetic quadrupole, electric quadrupole, ring dipole, magnetic dipole, and electric dipole, respectively.

    图 5  y-偏振: 透射谱 (a)和q-BIC谐振透射峰的Q-因子(b)与参数d的关系; x-偏振: 透射谱(c)和q-BIC谐振透射峰的Q-因子(d)随着参数n的关系

    Fig. 5.  y-polarization: Relationship of the transmission spectrum (a) and the Q-factorof the q-BIC resonant transmission peak (b) to parameter d; x-polarization: relationship of the transmission spectrum (c) and the Q-factor of and the q-BIC resonant transmission peak (d) to the parameter n.

    图 6  设待测物介电常数ε=2, 待测物厚度对超表面透射光谱的影响 (a)入射电磁波沿y方向偏振; (b)入射电磁波沿x方向偏振

    Fig. 6.  The influence of the thickness of the measured object on the transmission spectrum of the metasurface with the dielectric constant of the object to be measured ε = 2: (a) The incident electromagnetic wave is polarized along the y direction; (b) the incident electromagnetic wave is polarized along the x direction.

    图 7  y-偏振 (a) q-BIC谐振透射峰与待测物介电常数ε的关系(损耗角正切tanδ = 0); (b) q-BIC谐振透射峰与待测物tanδ的关系 (介电常数ε = 1). x-偏振 (c) q-BIC谐振透射峰与待测物介电常数ε的关系(损耗角正切tanδ = 0); (d) q-BIC谐振透射峰与待测物tanδ的关系(介电常数ε = 1)

    Fig. 7.  y-polarization: (a) Relationship between transmission peak of the q-BIC resonance and the dielectric constant of the subject to be measured ε (loss angle tanδ = 0); (b) relationship between q-BIC resonance transmission peak and tan δ to be measured (dielectric constant ε = 1). x-polarization: (c) Relationship between transmission peak of the q-BIC resonance and the dielectric constant of the subject to be measured ε (loss angle tanδ = 0); (d) relationship between q-BIC resonance transmission peak and tan δ to be measured (dielectric constant ε = 1).

  • [1]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048Google Scholar

    [2]

    von Neumann J, Wigner E P 1929 Physics Z 30 467

    [3]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510Google Scholar

    [4]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [5]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljacic M 2013 Nature 499 188Google Scholar

    [6]

    Urseel F 1997 Phys. Eng. Sci. 435 575

    [7]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [8]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [9]

    Retzler C H 2001 Appl. Ocean Res. 23 249Google Scholar

    [10]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2009 Europhys. Lett. 88 20006Google Scholar

    [11]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2011 J. Fluid Mech. 666 445Google Scholar

    [12]

    Fang C, Yang Q, Yuan Q, Gan X, Zhao J, Shao Y, Liu Y, Han G, Hao Y 2021 Opto-Electron. Adv. 4 200030Google Scholar

    [13]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [14]

    Feshbach H 1958 Ann. Phys. 5 357Google Scholar

    [15]

    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D Y, Neshev D N, Kivshar Y S, Altug H 2018 Science 360 1105Google Scholar

    [16]

    Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246Google Scholar

    [17]

    Chen X, Fan W 2019 Opt. Lett. 44 5876Google Scholar

    [18]

    Srivastava Y K, Ako T R, Gupta M, Bhaskaran M, Sriram S, Singh R, T 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [19]

    Wang Y L, Han Z H, Du Y, Qin J Y 2021 Nanophotonics 10 1295Google Scholar

    [20]

    Yue L S, Wang Y, Cui Z J, Zhang X J, Zhu Y Q, Zhang X, Chen S G, Wang X M, Zhang K 2021 Opt. Express 29 13563Google Scholar

    [21]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [22]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [23]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [24]

    Chen S S, Zhang W X, Yang B, Wu T, Zhang X D 2019 Sci. Rep. 9 5551Google Scholar

    [25]

    杜芊, 陈溢杭 2021 物理学报 70 154206Google Scholar

    Du Q, Chen Y H 2021 Acta Phys. Sin. 70 154206Google Scholar

    [26]

    Zhou C B, Huang L J, Jin R, Xu L, Li G H, Mohsen R, Chan X S, Lu W 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [27]

    Qin H Y, Su Z P, Liu M Q, Zeng Y X, Tang M C, Li M Y, Shi Y Z, Huang W, Qiu C W, Song Q H 2023 Light Sci. Appl. 12 66Google Scholar

    [28]

    Li H J, Zhou H M, Wei G G, Xu H S, Qin M, Liu J Q, Wu F 2023 Nanoscale 15 6636Google Scholar

    [29]

    Romano S, Zito G, Torino S 2018 Photonics Res. 6 726Google Scholar

    [30]

    Zhou Y, Zheng H Y, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316Google Scholar

    [31]

    Azzam S I, Shalaev V M, Boltasseva A, Kildishev A V 2018 Phys. Rev. Lett. 121 253901Google Scholar

    [32]

    Savinov V, Fedotov V A, Zheludev N I 2014 Phys. Rev. B 89 205112Google Scholar

    [33]

    Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [34]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [35]

    Ho L, Pepper M, Taday P 2008 Nat. Photonics 2 541Google Scholar

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 张鸿伟, 蔡仁昊, 李吉宁, 钟凯, 王与烨, 徐德刚, 姚建铨. 基于超表面的太赫兹与中长波红外高效分光器件. 物理学报, 2024, 73(19): 197801. doi: 10.7498/aps.73.20241066
    [3] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [4] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [5] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [6] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [7] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [8] 闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕. 基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究. 物理学报, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [9] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [10] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [11] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [12] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [13] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [14] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [15] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [16] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [17] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [18] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [19] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [20] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
计量
  • 文章访问数:  3097
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-24
  • 修回日期:  2023-11-09
  • 上网日期:  2023-12-08
  • 刊出日期:  2024-03-05

/

返回文章
返回