-
探索二维材料与其衬底之间的黏附性能对于二维材料的制备、转移以及器件性能的优化至关重要. 本文基于原子键弛豫理论和连续介质力学方法, 系统研究了尺寸和温度对MoS2/SiO2界面黏附性能的影响. 结果表明, 由于表面效应引起的热膨胀系数、晶格应变和杨氏模量的变化, MoS2/SiO2界面黏附能随MoS2厚度的减小而增大, 而热应变使MoS2/SiO2界面黏附能随温度的升高而逐渐降低. 此外, 预测了在不同尺寸和温度下MoS2在SiO2衬底上的“脱落”条件, 系统阐述了MoS2与SiO2衬底之间黏附性能的物理机制, 为基于二维材料电子器件的优化设计提供了理论基础.The interface adhesion properties are crucial for designing and fabricating two-dimensional materials and related nanoelectronic and nanomechanical devices. Although some progress of the interface adhesion properties of two-dimensional materials has been made, the underlying mechanism behind the size and temperature dependence of interface adhesion energy and related physical properties from the perspective of atomistic origin remain unclear. In this work, we investigate the effects of size and temperature on the thermal expansion coefficient and Young’s modulus of MoS2 as well as interface adhesion energy of MoS2/SiO2 based on the atomic-bond-relaxation approach and continuum medium mechanics. It is found that the thermal expansion coefficient of monolayer MoS2 is significantly larger than that of its few-layer and bulk counterparts under the condition of ambient temperature due to size effect and its influence on Debye temperature, whereas the thermal expansion coefficient increases with temperature going up and almost tends to a constant as the temperature approaches the Debye temperature. Moreover, the variations of bond identity induced by size effect and temperature effect will change the mechanical properties of MoS2. When the temperature is fixed, the Young’s modulus of MoS2 increases with size decreasing. However, the thermal strain induces the volume expansion, resulting in the Young’s modulus of MoS2 decreasing. Furthermore, the size and temperature dependence of lattice strain, mismatch strain of interface, and Young’s modulus will lead the van der Waals interaction energy and elastic strain energy to change, resulting in the change of interface adhesion energy of MoS2/SiO2. Noticeably, the interface adhesion energy of MoS2/SiO2 gradually increases with MoS2 size decreasing, while the thermal strain induced by temperature causes interface adhesion energy of MoS2/SiO2 to decrease with temperature increasing. In addition, we predict the conditions of the interface separation of MoS2/SiO2 under different sizes and temperatures. Our results demonstrate that increasing both size and temperature can significantly reduce the interface adhesion energy, which is of great benefit in detaching MoS2 film from the substrate. Therefore, the proposed theory not only clarifies the physical mechanism regarding the interface adhesion properties of transition metal dichalcogenides (TMDs) membranes, but also provides an effective way to design TMDs-based nanodevices for desirable applications.
-
Keywords:
- MoS2 /
- size and temperature effects /
- interface adhesion properties /
- atomic-bond-relaxation approach
[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[2] 李耀华, 董耀勇, 董辉, 郑学军 2022 物理学报 71 194601Google Scholar
Li Y H, Dong Y Y, Dong H, Zheng X J 2022 Acta Phys. Sin. 71 194601Google Scholar
[3] Li N, Wang Q Q, Shen C, Zheng W, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar
[4] Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar
[5] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar
[6] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明 2021 物理学报 70 028201Google Scholar
Liao J Y, Wu J X, Dang C H, Xie L M 2021 Acta Phys. Sin. 70 028201Google Scholar
[7] Tao Q Y, Wu R X, Li Q Y, Kong L G, Chen Y, Jiang J Y, Lu Z Y, Li B L, Li W Y, Li Z W, Liu L T, Duan X D, Liao L, Liu Y 2021 Nat. Commun. 12 1825Google Scholar
[8] Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S L, Liu Y N, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z, Kwon S Y 2020 Nat. Electron. 3 207Google Scholar
[9] Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R 2021 Nat. Nanotechnol. 16 1201Google Scholar
[10] Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D, Lu N S, Akinwande D 2013 ACS Nano 7 5446Google Scholar
[11] Deng S K, Gao E L, Xu Z P, Berry V 2017 ACS Appl. Mater. Interfaces 9 7812Google Scholar
[12] Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L, J. Bunch S 2017 Nano Lett. 17 5329Google Scholar
[13] Torres J, Zhu Y S, Liu P, Lim S C, Yun M H 2018 Phys. Status Solidi A 215 1700512Google Scholar
[14] Megra Y T, Suk J W 2019 J. Phys. D: Appl. Phys. 52 364002
[15] Calis M, Lloyd D, Boddeti N, Bunch J S 2023 Nano Lett. 23 2607Google Scholar
[16] Ke J, Ying P H, Du Y, Zou B, Sun H R, Zhang J 2022 Phys. Chem. Chem. Phys. 24 15991Google Scholar
[17] Brennan C J, Nguyen J, Yu E T, Lu N S 2015 Adv. Mater. Interfaces 2 1500176Google Scholar
[18] Li Y, Chen P J, Liu H, Peng J, Luo N 2021 J. Appl. Phys. 129 014302Google Scholar
[19] Li B W, Yin J, Liu X F, Wu H R, Li J D, Li X M, Guo W L 2019 Nat. Nanotechnol. 14 567Google Scholar
[20] Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar
[21] Rokni H. Lu W 2020 Nat. Commun. 11 5607Google Scholar
[22] Polfus J M, Muñiz M B, Ali A, Barragan-Yani D A, Vullum P E, Sunding M F, Taniguchi T, Watanabe K, Belle B D 2021 Adv. Mater. Interfaces 8 2100838Google Scholar
[23] Hu X, Yasaei P, Jokisaari J, Öğüt S, Khojin A S, Klie R F 2018 Phys. Rev. Lett. 120 055902Google Scholar
[24] Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar
[25] Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar
[26] Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar
[27] He Y, Chen W F, Yu W B, Ouyang G, Yang G W 2013 Sci. Rep. 3 2660Google Scholar
[28] Freund L B, Nix W D 1996 Appl. Phys. Lett. 69 173Google Scholar
[29] Zhu Z M, Zhang A, He Y, Ouyang G, Yang G W 2012 AIP Adv. 2 042185Google Scholar
[30] Gu M X, Zhou Y C, Sun C Q 2008 J. Phys. Chem. B 112 7992
[31] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110Google Scholar
[32] Aitken Z H, Huang R 2010 J. Appl. Phys. 107 123531Google Scholar
[33] Zhang L, Ouyang G 2018 J. Phys. D: Appl. Phys. 52 025302
[34] Li T S 2012 Phys. Rev. B 85 235407Google Scholar
[35] Feldman J L 1976 J. Phys. Chem. Solids 37 1141Google Scholar
[36] Dmitriev V, Torgashev V, Toledano P, Salje E K H 1997 Europhys. Lett. 37 553Google Scholar
[37] Su X Y, Cui H L, Ju W W, Yong Y L, Li X H 2017 Mod. Phys. Lett. B 31 1750229
[38] El-Mahalawy S H, Evans B L 1976 J. Appl. Crystallogr. 9 403Google Scholar
[39] Sevik C 2014 Phys. Rev. B 89 035422Google Scholar
[40] Hu Y W, Zhang F, Titze M, Deng B W, Li H B, Cheng G J 2018 Nanoscale 10 5717Google Scholar
[41] Zhang L N, Lu Z M, Song Y, Zhao L, Bhatia B, Bagnall K R, Wang E N 2019 Nano Lett. 19 4745Google Scholar
-
图 1 (a) 附着于SiO2衬底上的MoS2薄膜晶格结构示意图; (b) MoS2热膨胀系数随尺寸和温度的变化规律; MoS2/SiO2 (c) 界面应变和 (d) 总应变与尺寸和温度间的关系
Fig. 1. (a) Schematic illustration of a multilayer MoS2 on the SiO2 substrate; (b) thermal expansion coefficient of MoS2 as a function of size and temperature; dependence of (c) in-plane strain of MoS2/SiO2 as well as (d) the total strains in MoS2 membranes on size and temperature.
-
[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[2] 李耀华, 董耀勇, 董辉, 郑学军 2022 物理学报 71 194601Google Scholar
Li Y H, Dong Y Y, Dong H, Zheng X J 2022 Acta Phys. Sin. 71 194601Google Scholar
[3] Li N, Wang Q Q, Shen C, Zheng W, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar
[4] Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar
[5] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar
[6] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明 2021 物理学报 70 028201Google Scholar
Liao J Y, Wu J X, Dang C H, Xie L M 2021 Acta Phys. Sin. 70 028201Google Scholar
[7] Tao Q Y, Wu R X, Li Q Y, Kong L G, Chen Y, Jiang J Y, Lu Z Y, Li B L, Li W Y, Li Z W, Liu L T, Duan X D, Liao L, Liu Y 2021 Nat. Commun. 12 1825Google Scholar
[8] Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S L, Liu Y N, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z, Kwon S Y 2020 Nat. Electron. 3 207Google Scholar
[9] Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R 2021 Nat. Nanotechnol. 16 1201Google Scholar
[10] Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D, Lu N S, Akinwande D 2013 ACS Nano 7 5446Google Scholar
[11] Deng S K, Gao E L, Xu Z P, Berry V 2017 ACS Appl. Mater. Interfaces 9 7812Google Scholar
[12] Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L, J. Bunch S 2017 Nano Lett. 17 5329Google Scholar
[13] Torres J, Zhu Y S, Liu P, Lim S C, Yun M H 2018 Phys. Status Solidi A 215 1700512Google Scholar
[14] Megra Y T, Suk J W 2019 J. Phys. D: Appl. Phys. 52 364002
[15] Calis M, Lloyd D, Boddeti N, Bunch J S 2023 Nano Lett. 23 2607Google Scholar
[16] Ke J, Ying P H, Du Y, Zou B, Sun H R, Zhang J 2022 Phys. Chem. Chem. Phys. 24 15991Google Scholar
[17] Brennan C J, Nguyen J, Yu E T, Lu N S 2015 Adv. Mater. Interfaces 2 1500176Google Scholar
[18] Li Y, Chen P J, Liu H, Peng J, Luo N 2021 J. Appl. Phys. 129 014302Google Scholar
[19] Li B W, Yin J, Liu X F, Wu H R, Li J D, Li X M, Guo W L 2019 Nat. Nanotechnol. 14 567Google Scholar
[20] Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar
[21] Rokni H. Lu W 2020 Nat. Commun. 11 5607Google Scholar
[22] Polfus J M, Muñiz M B, Ali A, Barragan-Yani D A, Vullum P E, Sunding M F, Taniguchi T, Watanabe K, Belle B D 2021 Adv. Mater. Interfaces 8 2100838Google Scholar
[23] Hu X, Yasaei P, Jokisaari J, Öğüt S, Khojin A S, Klie R F 2018 Phys. Rev. Lett. 120 055902Google Scholar
[24] Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar
[25] Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar
[26] Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar
[27] He Y, Chen W F, Yu W B, Ouyang G, Yang G W 2013 Sci. Rep. 3 2660Google Scholar
[28] Freund L B, Nix W D 1996 Appl. Phys. Lett. 69 173Google Scholar
[29] Zhu Z M, Zhang A, He Y, Ouyang G, Yang G W 2012 AIP Adv. 2 042185Google Scholar
[30] Gu M X, Zhou Y C, Sun C Q 2008 J. Phys. Chem. B 112 7992
[31] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110Google Scholar
[32] Aitken Z H, Huang R 2010 J. Appl. Phys. 107 123531Google Scholar
[33] Zhang L, Ouyang G 2018 J. Phys. D: Appl. Phys. 52 025302
[34] Li T S 2012 Phys. Rev. B 85 235407Google Scholar
[35] Feldman J L 1976 J. Phys. Chem. Solids 37 1141Google Scholar
[36] Dmitriev V, Torgashev V, Toledano P, Salje E K H 1997 Europhys. Lett. 37 553Google Scholar
[37] Su X Y, Cui H L, Ju W W, Yong Y L, Li X H 2017 Mod. Phys. Lett. B 31 1750229
[38] El-Mahalawy S H, Evans B L 1976 J. Appl. Crystallogr. 9 403Google Scholar
[39] Sevik C 2014 Phys. Rev. B 89 035422Google Scholar
[40] Hu Y W, Zhang F, Titze M, Deng B W, Li H B, Cheng G J 2018 Nanoscale 10 5717Google Scholar
[41] Zhang L N, Lu Z M, Song Y, Zhao L, Bhatia B, Bagnall K R, Wang E N 2019 Nano Lett. 19 4745Google Scholar
计量
- 文章访问数: 2307
- PDF下载量: 129
- 被引次数: 0