搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤

惠战强 刘瑞华 高黎明 韩冬冬 李田甜 巩稼民

引用本文:
Citation:

基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤

惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民

Low-loss weak-coupling 6-mode hollow-core negative curvature fiber based on symmetric double-ring nested tube

Hui Zhan-Qiang, Liu Rui-Hua, Gao Li-Ming, Han Dong-Dong, Li Tian-Tian, Gong Jia-Min
PDF
HTML
导出引用
  • 本文设计了一种具有对称双环嵌套管结构的新型低损耗少模空芯负曲率光纤, 该光纤支持LP01, LP11, LP21, LP02, LP31a, LP31b共6种纤芯模式. 所设计的光纤以SiO2作为基底材料, 采用特殊的对称双环嵌套结构将包层区域进行划分, 能够有效地减小纤芯模式与包层模式的耦合. 使用有限元法对该少模空芯负曲率光纤的结构参数进行优化, 并分析了纤芯各个模式的限制损耗和弯曲损耗. 仿真结果表明, 所提出的少模空芯负曲率光纤能够同时支持弱耦合的6种纤芯模式独立传输(相邻模式间的有效折射率差均大于10–4, 有效地避免了纤芯内模式间的耦合). 在400 nm带宽(1.23—1.63 μm, 覆盖O, E, S, C, L波段)范围内, 纤芯中的6个模式均保持低损耗稳定传输. 各模式限制损耗在1.4 μm处达到最低, 其中基模LP01模式的限制损耗最低, 为4.3×10–7 dB/m. 此外, 当弯曲半径为7 cm时, 各模式在一定工作波长范围内均保持低弯曲损耗传输. 公差分析表明, 当结构参数偏移±1%时, 该少模空芯负曲率光纤仍然可以保持低损耗弱耦合的传输特性.
    Few-mode optical fibers have played an increasingly important role in breaking through the transmission capacity limitations of single-mode optical fiber and alleviating the bandwidth crisis in optic fiber communication systems in recent years. Nevertheless, traditional solid core few-mode optical fibers usually suffer optical fiber nonlinearity and mode coupling, leading to mode crosstalk between channels. Hollow core negative curvature fibers (HC-NCF) have attracted widespread attention due to their advantages, such as low latency, low nonlinearity, low dispersion, low transmission loss, and large operating bandwidth. In this work, a novel low-loss few-mode HC-NCF with symmetrically double ring nested tube structure is designed, which supports six core modes including LP01, LP11, LP21, LP02, LP31a, and LP31b. The designed optical fiber is based on silica dioxide substrate and adopts a unique symmetrical double ring nested cladding structure, which can effectively suppress the coupling between the core mode and the cladding mode. The finite element method (FDE) is used to numerically analyze the properties of the proposed few-mode HC-NCF and optimize the structural parameters of the few-mode HC-NCF. Moreover, the confinement loss and bending loss of all core modes are investigated. The simulation results show that the proposed few-mode HC-NCF can support the independent transmission of six weakly coupled core modes (with the effective refractive index difference greater than 1×10–4 between the adjacent core modes, which greatly avoids the coupling between the adjacent modes in the fiber core). In the 400 nm bandwidth (1.23–1.63 μm, covering the O, E, S, C, and L bands), all six modes in the fiber core maintain low loss transmission. Moreover, in the range of 1.3–1.63 μm, the confinement loss (CL) of LP01, LP11 and LP21 mode are all less than 1×10–3 dB/m, and the CL of LP02 and LP31b mode are both less than 3×10–3 dB/m. The CL of each mode reaches the lowest value at 1.4 μm, and the LP01 mode has the lowest CL of 4.3×10–7 dB/m. In addition, for a bending radius of 7 cm, each mode maintains the low bending loss characteristic in a certain operating wavelength range. In the range of 1.23–1.61 μm, the BL of LP01 is less than 4.5×10–4 dB/m, and the BL of LP11 is less than 1.3×10–3 dB/m. The tolerance analysis shows that even with the deviation of structural parameters of ±1%, the few-mode HC-NCF can still maintain the characteristic of low-loss and weak coupling. The designed few-mode HC-NCF has ultra-low CL and bending-insensitive characteristics while supporting independent transmission of six modes, which will find huge potential applications in future high performance mode division multiplexing systems.
      通信作者: 惠战强, zhanqianghui@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61875165)、陕西省重点研发计划(批准号: 2022GY-008)、陕西省自然科学研究计划(批准号: 2022JQ-638)、陕西省创新能力支撑计划项目(批准号: 2022PT-15)、陕西省教育厅协同创新项目(批准号: 20JY060)和705所重点实验室开放基金(批准号: 705JCH2023-3.2)资助的课题.
      Corresponding author: Hui Zhan-Qiang, zhanqianghui@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875165), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2022GY-008), the Natural Science Research Program of Shaanxi Province, China (Grant No. 2022JQ-638), the Innovation Capability Support Program of Shaanxi Province, China (Grant No. 2022PT-15), the Collaborative Innovation Projects of Education Office of Shaanxi Province, China (Grant No. 20JY060), and the Open Fund for 705 Key Laboratory, China (Grant No. 705JCH2023-3.2).
    [1]

    Benabid F, Knight J C, Antonopoulos G, Russell P S J 2002 Science 298 399Google Scholar

    [2]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nat. Photonics 7 279Google Scholar

    [3]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [4]

    Yu F, Knight J C 2016 IEEE J. Sel. Top. Quantum Electron. 22 146Google Scholar

    [5]

    Hasan M I, Akhmediev N, Chang W 2017 Opt. Lett. 42 703Google Scholar

    [6]

    Shen W, Du J, Sun L, Wang C, He Z 2020 J. Lightwave Technol. 38 3874Google Scholar

    [7]

    Liu Z, Karanov B, Galdino L, Hayes J R, Lavery D, Clark K, Shi K, Elson D J, Thomsen B C, Petrovich M N, Richardson D J, Poletti F, Slavik R, Bayvel P 2019 J. Lightwave Technol. 37 909Google Scholar

    [8]

    Michaud-Belleau V, Fokoua E R N, Bradley T, Hayes J R, Slavik R 2021 Optica 8 216Google Scholar

    [9]

    Zhu X, Wu D, Wang Y, Yu F, Li Q, Qi Y, Knight J, Chen S, Hu L 2021 Opt. Express 29 1492Google Scholar

    [10]

    Azendorf F, Schmauss B, Shi B, Fokoua E N, Radan Slavík, Eiselt M 2021 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, California United States, June 6–10, 2021 p1

    [11]

    Liu W, Zheng Y, Wang Z, Wang Z X, Yang J, Chen M X, Qi M, Rehman S U, Shum P P, Zhu L, Wei L 2021 Adv. Mater. Interfaces 8 2001978Google Scholar

    [12]

    Gérôme F, Cook K T, George A K, Wadsworth W J, Knight J C 2007 Opt. Express 15 7126Google Scholar

    [13]

    Urich A, Maier R R, Yu F, Knight J C, Hand D P, Shephard J D 2013 Biomed. Opt. Express 4 193Google Scholar

    [14]

    Couch D E, Hickstein D D, Winters D G, Backus S J, Kirchner M S, Domingue S R, Ramirez J J, Durfee C G, Murnane M M, Kapteyn H C 2020 Optica 7 832Google Scholar

    [15]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [16]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C 1999 Science 285 1537Google Scholar

    [17]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J, Russell S J P 2005 Opt. Express 13 236Google Scholar

    [18]

    Luan F, George A K, Hedley T D, Pearce G J, Bird D M, Knight J C, Russell P S J 2004 Opt. Lett. 29 2369Google Scholar

    [19]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 562Google Scholar

    [20]

    Jasion G T, Bradley T, Harrington K, Sakr H, Poletti F 2020 Optical Fiber Communications Conference and Exhibition (OFC) San Diego, California United States, March 8–12, 2020

    [21]

    Osório J H, Amrani F, Delahaye F, Dhaybi A, Vasko K, Melli F, Giovanardi F, Vandembroucq D, Tessier G, Vincetti L, Debord B, Gérôme F, Benabid F 2023 Nat. Commun. 14 1146Google Scholar

    [22]

    Mulvad H C H, Abokhamis Mousavi S, Zuba V, Xu L, Sakr H, Bradley T D, Hayes J R, Jasion G T, Numkam Fokoua E R, Taranta A, Alam S, Richardson D J, Poletti F 2022 Nat. Photonics 16 448Google Scholar

    [23]

    Ding W, Wang Y Y, Gao S, Wang M, Wang P 2020 IEEE J. Sel. Top. Quantum Electron. 26 4400312Google Scholar

    [24]

    Gao S F, Wang Y Y, Ding W, Jiang D, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 2828Google Scholar

    [25]

    Yue B, Feng J, Tao J, Zhou G, Huang X 2021 Opt. Fiber Technol. 67 102734Google Scholar

    [26]

    Xue L, Sheng X, Jia H, Lou S 2023 J. Lightwave Technol. 41 6043Google Scholar

    [27]

    Belardi W 2015 J. Lightwave Technol. 33 4497Google Scholar

    [28]

    Yan S B, Lou S, Wang X, Zhang W, Zhao T 2018 Opt. Fiber Technol. 46 118Google Scholar

    [29]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [30]

    Zhang X, Feng Z, Marpaung D A, Fokoua E R, Sakr H, Hayes J R, Poletti F, Richardson D J, Slavík R 2022 Light Sci. Appl 11 213Google Scholar

    [31]

    Yao C Y, Gao S F, Wang Y Y, Wang P, Jin W, Ren W 2020 J. Lightwave Technol. 38 2067Google Scholar

    [32]

    Ma X X, Li J S, Guo H T, Li S G, Zhang H, Xu Y T, Meng X J, Guo Y, Chen Q, Wang C J, Cui X W 2023 Plasmonics 18 899Google Scholar

    [33]

    Zhang H, Chang Y J, Xu Y T, Liu C Z, Xiao X S, Li J S, Ma X X, Wang Y Y, Guo H T 2023 Opt. Express 31 7659Google Scholar

    [34]

    Zhou Y, Cao R, Wang S, Peng J, Li H, Chu Y, Xing Y, Dai N, Li J 2022 IEEE Photonics J. 14 1Google Scholar

    [35]

    Zhu Y, Wang S, Chen M, Zuo X, Wang H, Rao C, Xu Y, Ji D, Liu Y 2022 IEEE Photonics Technol. Lett. 34 283Google Scholar

    [36]

    Nawazuddin M B, Wheeler N V, Hayes J R, Bradley T D, Sandoghchi S R, Gouveia M A, Jasion G T, Richardson D J, Poletti F 2018 J. Lightwave Technol. 36 1213Google Scholar

    [37]

    Yan S, Lou S, Lian Z, Zhang W, Wang X 2019 J. Lightwave Technol. 37 5707Google Scholar

    [38]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [39]

    Chen Y X, Lin Z J, Bélanger-de Villers S, Rusch L A, Shi W 2020 IEEE J. Sel. Top. Quantum Electron. 26 6100107Google Scholar

    [40]

    Naghshvarianjahromi M, Kumar S, Deen M J, Iwaya T, Kimura K, Yoshida M, Hirooka T, Nakazawa M 2022 IEEE J. Sel. Top. Quantum Electron. 28 7500210Google Scholar

    [41]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [42]

    Tarighat A, Hsu R C J, Shah A, Sayed A H, Jalali B 2007 IEEE Commun. Mag. 45 57Google Scholar

    [43]

    Berdagué S, Facq P 1982 Appl. Opt. 21 1950Google Scholar

    [44]

    Habib M S, Antonio-Lopez J E, Markos C, Schülzgen A, Amezcua-Correa R 2019 Opt. Express 27 3824Google Scholar

    [45]

    Habib M S, Bang O, Bache M 2016 Opt. Express 24 8429Google Scholar

    [46]

    Wang Z, Tu J, Liu Z, Yu C, Lu C 2020 J. Lightwave Technol. 38 864Google Scholar

    [47]

    Goel C, Yoo S 2021 J. Lightwave Technol. 39 6592Google Scholar

    [48]

    Ou J, Li J P, Zheng W Q, Qin Y W, Xu O, Huang Q D, Peng D, Xiang M, Xu Y, Fu S N 2022 20th International Conference on Optical Communications and Networks (ICOCN) Shenzhen, China, August 12–15, 2022 p1

    [49]

    Liu H, Wang Y, Zhou Y, Guan Z, Yu Z, Ling Q, Luo S, Shao J, Huang D, Chen D 2022 Opt. Express 30 21833Google Scholar

    [50]

    Vincetti L, Setti V 2012 Opt. Express 20 14350Google Scholar

    [51]

    Zhang J, Wang Z, Chen J 2014 Proc. COMSOL Conf. Shanghai, China 2014 p2

    [52]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592Google Scholar

    [53]

    Vincetti L 2016 Opt. Express 24 10313Google Scholar

    [54]

    Chen X, Hu X, Yang L, Peng J, Li H, Dai N, Li J 2019 Opt. Express 27 19548Google Scholar

    [55]

    Wang L, LaRochelle S 2015 Opt. Lett. 40 5846Google Scholar

    [56]

    Nagano K, Kawakami S, Nishida S 1978 Appl. Opt. 17 2080Google Scholar

    [57]

    Belardi W, Knight J C 2014 Opt. Express 22 10091Google Scholar

    [58]

    Pryamikov A D, Biriukov A S, Kosolapov A F, Plotnichenko V G, Semjonov S L, Dianov E M 2011 Opt. Express 19 1441Google Scholar

    [59]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 11153Google Scholar

    [60]

    Yang S, Sheng X, Zhao G, Lou S, Guo J 2021 IEEE Access 9 29599Google Scholar

    [61]

    Hayashi J G, Ventura A, Cimek J, Slimen F B, White N, Sakr H, Jasion G T, Wheeler N V, Poletti F 2020 22nd International Conference on Transparent Optical Networks (ICTON) Bari, Italy, July 19–23, 2020 p1

    [62]

    Shaha K S R, Khaleque A 2021 Appl. Opt. 60 6243Google Scholar

    [63]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar

  • 图 1  对称双环嵌套管少模HC-NCF的横截面结构图

    Fig. 1.  Cross sectional structure of few-mode HC-NCF with symmetrically double ring nested tube structure.

    图 2  当纤芯半径R = 16 μm和k = 0.4时, 改变g对模式传输特性的影响 (a) 有效折射率; (b) CL

    Fig. 2.  When the core radius R = 16 μm and k = 0.4, the impact of changing g on mode transmission characteristics: (a) Effective refractive index; (b) CL.

    图 3  少模HC-NCF中纤芯模式的模场分布图

    Fig. 3.  Mode field distribution of guided core modes in the few-mode HC-NCF.

    图 4  当纤芯半径R = 16 μm, g = 0.5 μm, 改变k对模式传输特性的影响 (a) 有效折射率; (b) 相邻模式有效折射率差; (c) CL; (d) 相邻模式间DGD

    Fig. 4.  Impact of changing k on mode transmission characteristics for R = 16 μm and g = 0.5 μm: (a) Effective refractive index; (b) difference of effective refractive index of adjacent modes; (c) CL; (d) DGD between adjacent modes.

    图 5  k = 0.25, LP31a 模的模场分布 (a) 二维平面图; (b) 三维立体图

    Fig. 5.  Mode field distribution of LP31a modes at k = 0.25: (a) 2D plane diagram; (b) 3D stereo diagram.

    图 6  g = 0.5 μm, k = 0.4时, 改变纤芯半径R对模式传输的影响 (a) 有效折射率; (b) 相邻模式有效折射率差; (c) CL; (d) 相邻模式间的DGD

    Fig. 6.  Impact of changing R on mode transmission characteristics for g = 0.5 μm and k = 0.4: (a) Effective refractive index; (b) difference of effective refractive index of adjacent modes; (c) CL; (d) DGD between adjacent modes.

    图 7  g = 0.5 μm, k = 0.4, R = 24 μm时, 波长变化对模式传输的影响 (a) 有效折射率; (b) 相邻模式有效折射率差; (c) CL; (d) 相邻模式间的DGD

    Fig. 7.  Variation of changing wavelength on mode transmission characteristics for g = 0.5 μm, k = 0.4 and R = 16 μm: (a) Effective refractive index; (b) difference of effective refractive index of adjacent modes; (c) CL; (d) DGD between adjacent modes.

    图 8  g = 0.5 μm, k = 0.4, R = 24 μm时, 不同弯曲半径对模式传输的影响 (a) 预期基线; (b) 有效折射率; (c) 相邻模式有效折射率差; (d) BL

    Fig. 8.  Variation of changing bending radius on mode transmission characteristics for g = 0.5 μm, k = 0.4: (a) Expected baseline; (b) effective refractive index; (c) difference of effective refractive index of adjacent modes; (d) BL.

    图 9  当弯曲半径Rb = 7 cm时, 不同波长对模式传输的影响 (a) 相邻模式有效折射率差; (b) BL

    Fig. 9.  Variation of changing wavelength on mode transmission with bending radius Rb = 7 cm: (a) Difference of effective refractive index of adjacent modes; (b) BL.

    图 10  嵌套管壁厚参数t偏移+1%时, 相邻模式有效折射率差和CL的变化

    Fig. 10.  With nested tube wall thickness parameter t deviation +1%, the change of effective refractive index difference of adjacent mode and CL.

    图 11  嵌套管壁厚参数t偏移–1%时, 相邻模式有效折射率差和CL的变化

    Fig. 11.  With nested tube wall thickness parameter t deviation –1%, the change of effective refractive index difference of adjacent mode and CL.

    图 12  参数k偏移+1%时, 相邻模式有效折射率差和CL的变化

    Fig. 12.  With parameter k deviation +1%, the change of effective refractive index difference of adjacent mode and CL.

    图 13  参数k偏移–1%时, 相邻模式有效折射率差和CL的变化

    Fig. 13.  With parameter k deviation -1%, the change of effective refractive index difference of adjacent mode and CL.

    表 1  少模HC-NCF性能比较

    Table 1.  Performance comparison of few-mode HC-NCF

    结构 中心波长/µm 支持模式数 基模最低限制损耗/(dB·m–1) 工作带宽/nm 弯曲半径/cm 弯曲损耗/(dB·m–1)
    Wang Z, et al. (2020)[46] 1.55 2 1.7×10–4 @1.53 µm 340 10 6.6×10–4 (200 nm)
    Goel C, et al. (2021)[47] 1.00 5 1.4×10–5@1 µm 20 5×10–3
    Ou J, et al. (2022)[48] 1.55 2 7.4×10–7@1.06 µm 800
    Liu H, et al. (2022)[49] 1.55 5 3.4×10–7@1.38 µm 300 6 3×10–4 (210 nm)
    Our work 1.55 6 4.3×10–7@1.4 µm 330 7 4.5×10–4 (420 nm)
    下载: 导出CSV
  • [1]

    Benabid F, Knight J C, Antonopoulos G, Russell P S J 2002 Science 298 399Google Scholar

    [2]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nat. Photonics 7 279Google Scholar

    [3]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [4]

    Yu F, Knight J C 2016 IEEE J. Sel. Top. Quantum Electron. 22 146Google Scholar

    [5]

    Hasan M I, Akhmediev N, Chang W 2017 Opt. Lett. 42 703Google Scholar

    [6]

    Shen W, Du J, Sun L, Wang C, He Z 2020 J. Lightwave Technol. 38 3874Google Scholar

    [7]

    Liu Z, Karanov B, Galdino L, Hayes J R, Lavery D, Clark K, Shi K, Elson D J, Thomsen B C, Petrovich M N, Richardson D J, Poletti F, Slavik R, Bayvel P 2019 J. Lightwave Technol. 37 909Google Scholar

    [8]

    Michaud-Belleau V, Fokoua E R N, Bradley T, Hayes J R, Slavik R 2021 Optica 8 216Google Scholar

    [9]

    Zhu X, Wu D, Wang Y, Yu F, Li Q, Qi Y, Knight J, Chen S, Hu L 2021 Opt. Express 29 1492Google Scholar

    [10]

    Azendorf F, Schmauss B, Shi B, Fokoua E N, Radan Slavík, Eiselt M 2021 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, California United States, June 6–10, 2021 p1

    [11]

    Liu W, Zheng Y, Wang Z, Wang Z X, Yang J, Chen M X, Qi M, Rehman S U, Shum P P, Zhu L, Wei L 2021 Adv. Mater. Interfaces 8 2001978Google Scholar

    [12]

    Gérôme F, Cook K T, George A K, Wadsworth W J, Knight J C 2007 Opt. Express 15 7126Google Scholar

    [13]

    Urich A, Maier R R, Yu F, Knight J C, Hand D P, Shephard J D 2013 Biomed. Opt. Express 4 193Google Scholar

    [14]

    Couch D E, Hickstein D D, Winters D G, Backus S J, Kirchner M S, Domingue S R, Ramirez J J, Durfee C G, Murnane M M, Kapteyn H C 2020 Optica 7 832Google Scholar

    [15]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [16]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C 1999 Science 285 1537Google Scholar

    [17]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J, Russell S J P 2005 Opt. Express 13 236Google Scholar

    [18]

    Luan F, George A K, Hedley T D, Pearce G J, Bird D M, Knight J C, Russell P S J 2004 Opt. Lett. 29 2369Google Scholar

    [19]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 562Google Scholar

    [20]

    Jasion G T, Bradley T, Harrington K, Sakr H, Poletti F 2020 Optical Fiber Communications Conference and Exhibition (OFC) San Diego, California United States, March 8–12, 2020

    [21]

    Osório J H, Amrani F, Delahaye F, Dhaybi A, Vasko K, Melli F, Giovanardi F, Vandembroucq D, Tessier G, Vincetti L, Debord B, Gérôme F, Benabid F 2023 Nat. Commun. 14 1146Google Scholar

    [22]

    Mulvad H C H, Abokhamis Mousavi S, Zuba V, Xu L, Sakr H, Bradley T D, Hayes J R, Jasion G T, Numkam Fokoua E R, Taranta A, Alam S, Richardson D J, Poletti F 2022 Nat. Photonics 16 448Google Scholar

    [23]

    Ding W, Wang Y Y, Gao S, Wang M, Wang P 2020 IEEE J. Sel. Top. Quantum Electron. 26 4400312Google Scholar

    [24]

    Gao S F, Wang Y Y, Ding W, Jiang D, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 2828Google Scholar

    [25]

    Yue B, Feng J, Tao J, Zhou G, Huang X 2021 Opt. Fiber Technol. 67 102734Google Scholar

    [26]

    Xue L, Sheng X, Jia H, Lou S 2023 J. Lightwave Technol. 41 6043Google Scholar

    [27]

    Belardi W 2015 J. Lightwave Technol. 33 4497Google Scholar

    [28]

    Yan S B, Lou S, Wang X, Zhang W, Zhao T 2018 Opt. Fiber Technol. 46 118Google Scholar

    [29]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [30]

    Zhang X, Feng Z, Marpaung D A, Fokoua E R, Sakr H, Hayes J R, Poletti F, Richardson D J, Slavík R 2022 Light Sci. Appl 11 213Google Scholar

    [31]

    Yao C Y, Gao S F, Wang Y Y, Wang P, Jin W, Ren W 2020 J. Lightwave Technol. 38 2067Google Scholar

    [32]

    Ma X X, Li J S, Guo H T, Li S G, Zhang H, Xu Y T, Meng X J, Guo Y, Chen Q, Wang C J, Cui X W 2023 Plasmonics 18 899Google Scholar

    [33]

    Zhang H, Chang Y J, Xu Y T, Liu C Z, Xiao X S, Li J S, Ma X X, Wang Y Y, Guo H T 2023 Opt. Express 31 7659Google Scholar

    [34]

    Zhou Y, Cao R, Wang S, Peng J, Li H, Chu Y, Xing Y, Dai N, Li J 2022 IEEE Photonics J. 14 1Google Scholar

    [35]

    Zhu Y, Wang S, Chen M, Zuo X, Wang H, Rao C, Xu Y, Ji D, Liu Y 2022 IEEE Photonics Technol. Lett. 34 283Google Scholar

    [36]

    Nawazuddin M B, Wheeler N V, Hayes J R, Bradley T D, Sandoghchi S R, Gouveia M A, Jasion G T, Richardson D J, Poletti F 2018 J. Lightwave Technol. 36 1213Google Scholar

    [37]

    Yan S, Lou S, Lian Z, Zhang W, Wang X 2019 J. Lightwave Technol. 37 5707Google Scholar

    [38]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [39]

    Chen Y X, Lin Z J, Bélanger-de Villers S, Rusch L A, Shi W 2020 IEEE J. Sel. Top. Quantum Electron. 26 6100107Google Scholar

    [40]

    Naghshvarianjahromi M, Kumar S, Deen M J, Iwaya T, Kimura K, Yoshida M, Hirooka T, Nakazawa M 2022 IEEE J. Sel. Top. Quantum Electron. 28 7500210Google Scholar

    [41]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [42]

    Tarighat A, Hsu R C J, Shah A, Sayed A H, Jalali B 2007 IEEE Commun. Mag. 45 57Google Scholar

    [43]

    Berdagué S, Facq P 1982 Appl. Opt. 21 1950Google Scholar

    [44]

    Habib M S, Antonio-Lopez J E, Markos C, Schülzgen A, Amezcua-Correa R 2019 Opt. Express 27 3824Google Scholar

    [45]

    Habib M S, Bang O, Bache M 2016 Opt. Express 24 8429Google Scholar

    [46]

    Wang Z, Tu J, Liu Z, Yu C, Lu C 2020 J. Lightwave Technol. 38 864Google Scholar

    [47]

    Goel C, Yoo S 2021 J. Lightwave Technol. 39 6592Google Scholar

    [48]

    Ou J, Li J P, Zheng W Q, Qin Y W, Xu O, Huang Q D, Peng D, Xiang M, Xu Y, Fu S N 2022 20th International Conference on Optical Communications and Networks (ICOCN) Shenzhen, China, August 12–15, 2022 p1

    [49]

    Liu H, Wang Y, Zhou Y, Guan Z, Yu Z, Ling Q, Luo S, Shao J, Huang D, Chen D 2022 Opt. Express 30 21833Google Scholar

    [50]

    Vincetti L, Setti V 2012 Opt. Express 20 14350Google Scholar

    [51]

    Zhang J, Wang Z, Chen J 2014 Proc. COMSOL Conf. Shanghai, China 2014 p2

    [52]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592Google Scholar

    [53]

    Vincetti L 2016 Opt. Express 24 10313Google Scholar

    [54]

    Chen X, Hu X, Yang L, Peng J, Li H, Dai N, Li J 2019 Opt. Express 27 19548Google Scholar

    [55]

    Wang L, LaRochelle S 2015 Opt. Lett. 40 5846Google Scholar

    [56]

    Nagano K, Kawakami S, Nishida S 1978 Appl. Opt. 17 2080Google Scholar

    [57]

    Belardi W, Knight J C 2014 Opt. Express 22 10091Google Scholar

    [58]

    Pryamikov A D, Biriukov A S, Kosolapov A F, Plotnichenko V G, Semjonov S L, Dianov E M 2011 Opt. Express 19 1441Google Scholar

    [59]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 11153Google Scholar

    [60]

    Yang S, Sheng X, Zhao G, Lou S, Guo J 2021 IEEE Access 9 29599Google Scholar

    [61]

    Hayashi J G, Ventura A, Cimek J, Slimen F B, White N, Sakr H, Jasion G T, Wheeler N V, Poletti F 2020 22nd International Conference on Transparent Optical Networks (ICTON) Bari, Italy, July 19–23, 2020 p1

    [62]

    Shaha K S R, Khaleque A 2021 Appl. Opt. 60 6243Google Scholar

    [63]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计. 物理学报, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [3] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析. 物理学报, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [4] 孟淼, 严德贤, 李九生, 孙帅. 基于嵌套三角形包层结构负曲率太赫兹光纤的研究. 物理学报, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [5] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器. 物理学报, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [6] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [7] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [8] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [9] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析. 物理学报, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [10] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [11] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [12] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [13] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [14] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究. 物理学报, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [15] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析. 物理学报, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [16] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调. 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [17] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [18] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计. 物理学报, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [19] 王 健, 雷乃光, 余重秀. 椭圆空气孔微结构光纤限制损耗的分析. 物理学报, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [20] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
计量
  • 文章访问数:  2187
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2024-01-13
  • 上网日期:  2024-01-16
  • 刊出日期:  2024-04-05

/

返回文章
返回