搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限域条件下氮分子的高温高压诱导聚合

郭琳琳 赵梓彤 隋明宏 王鹏 刘冰冰

引用本文:
Citation:

限域条件下氮分子的高温高压诱导聚合

郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰

High-pressure high-temperature induced polymerization of nitrogen molecules under restricted condition

Guo Lin-Lin, Zhao Zi-Tong, Sui Ming-Hong, Wang Peng, Liu Bing-Bing
PDF
HTML
导出引用
  • 聚合氮被认为是一种极具潜力的新型高能量密度材料, 但是高温高压条件下合成的聚合氮结构往往具有较低热力学稳定性. 限域策略有助于聚合氮高压结构的稳定, 为氮聚合提供了新的调控途径. 本文在氮化硼纳米管中限域分子氮, 利用高压原位拉曼散射光谱表征技术研究不同含氮量限域体系的高压诱导氮聚合及聚合氮结构的卸压稳定性. 研究表明, 在高含氮量的体系中, 限域到氮化硼纳米管内的N2与非限域的N2的拉曼特征振动峰表现出不同的拉曼光谱压力响应行为. 在123 GPa压力下, 利用激光加热诱导氮分子间聚合, 生成cg-N聚合氮结构. 卸压过程中, 未被限域的cg-N在40 GPa左右发生爆炸性分解, 分解产生的能量影响了限域cg-N的稳定性, 使其同样发生分解. 环境压力下限域N2可能以液态形式稳定存在. 在低含氮量限域体系中, 高温高压下限域N2结晶生成了含有N=N双键的晶体结构, 其中的N=N双键有两种长度, 分别接近${\mathrm{N}}_3^- $阴离子及${\mathrm{N}}_4^+ $团簇中N=N双键的键长. 在卸压过程中这种结构可以稳定至25 GPa.
    Polymeric nitrogen has been recognized to be a new type of high-energy density material (HEDM). However, the polymeric nitrogen structure formed under high-pressure and high-temperature conditions is usually in poor thermodynamic stability. Confinement strategy is conductive to the stabilization of the high-pressure phase of polymeric nitrogen structures, providing a new modulation approach for realizing the polymerization of nitrogen. In this work, nitrogen molecules are confined into the boron nitride nanotubes (N2@BNNTs) under high-pressure condition. The pressure-induced polymerization of nitrogen in N2@BNNT samples with varying nitrogen content and the stabilities of polymeric nitrogen structure are characterized by high-pressure in situ Raman spectroscopy method. In the N2@BNNT sample with higher nitrogen content, the N2 confined to boron nitride nanotubes exhibits different Raman spectral pressure response behaviors compared with that of non confined N2, but both of them are transformed into cg-N structure after laser heating at about 123 GPa. With pressure decreasing to 40 GPa, the unconfined cg-N decomposes and releases huge energy, which affects the stability and results in the decomposition of the confined cg-N. Under ambient conditions, the confined N2 is stabilized in the liquid phase. In the N2@BNNTs sample with lower nitrogen content, the confined N2 is transformed into new polymeric nitrogen structure, which possesses N=N double bonds with different bond lengths close to the those in the ${\mathrm{N}}_3^- $ anion and ${\mathrm{N}}_4^+ $ clusters, respectively, after laser-heating in the pressure range of 122–150 GPa. This polynitrogen structure is stable with pressure decreasing to 25 GPa. This work provides new insights into the synthesis and stabilization of polymeric nitrogen structures, opening up new avenues for developing these advanced structures.
      通信作者: 王鹏, wangpengtrrs@jlu.edu.cn ; 刘冰冰, liubb@jlu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12174143)资助的课题.
      Corresponding author: Wang Peng, wangpengtrrs@jlu.edu.cn ; Liu Bing-Bing, liubb@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174143).
    [1]

    Légaré M A, Rang M, Bélanger-Chabot G, Schweizer J I, Krummenacher I, Bertermann R, Arrowsmith M, Holthausen M C, Braunschweig H 2019 Science 363 1329Google Scholar

    [2]

    Qi C, Li S H, Li Y C, Wang Y, Chen X K, Pang S P 2011 J. Mater. Chem. 21 3221Google Scholar

    [3]

    Klapötke T M, Piercey D G 2011 Inorg. Chem. 50 2732Google Scholar

    [4]

    Li Y C, Qi C, Li S H, Zhang H J, Sun C H, Yu Y Z, Pang S P 2010 J. Am. Chem. Soc. 132 12172Google Scholar

    [5]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [6]

    Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [7]

    Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001Google Scholar

    [8]

    Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y 1, Yao Y S, Li B1, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2019 Nat. Commun. 10 4515Google Scholar

    [9]

    Abou-Rachid H, Hu A, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar

    [10]

    VTimoshevskii V, Ji W, Abou-Rachid H, Lussier L S, Guo H 2009 Phys. Rev. B 80 115409Google Scholar

    [11]

    Shi X H, Liu B, Liu S J, Niu S F, Liu S, Liu R, Liu B B 2018 Sci. Rep. 8 13758Google Scholar

    [12]

    Li S, Li H Y, Yao Z, Lu S C 2021 Mater. Today. Commun. 26 101670Google Scholar

    [13]

    Lv H, Yao M G, Li Q J, Liu R, Liu B, Yao Z, Liu D D, Liu Z D, Liu J, Chen Z Q, Zou B, Cui T, Liu B B 2015 Sci. Rep. 5 13234Google Scholar

    [14]

    Wu Z Y, Benchafia E M, Iqbal Z, Wang X Q 2014 Chem. Int. Ed. 53 12555Google Scholar

    [15]

    Zhang C, Sun C, Hu B C, Yu C M, Lu M 2017 Science 355 374Google Scholar

    [16]

    Zhang C, Yang C, Yu C M, Zheng Z S, Sun C G 2017 Angew. Chem. 56 4512Google Scholar

    [17]

    Schneider H, Hafner W, Wokaun A, Olijnyk H 1992 J. Chem. Phys. 96 8046Google Scholar

    [18]

    Schiferl D, Buchsbaum S, Mills R L 1985 J. Phys. Chem. 89 2324Google Scholar

    [19]

    Eremets M I, Popov Yu M, Trojan I A, Denisov V N, Boehle R R 2004 J. Chem. Phys. 120 10618Google Scholar

    [20]

    Medvedev S A, Trojan I A, Eremets M I, Palasyuk T, Klapotke T M, Evers J 2009 J. Phys. Condens. Matter. 21 195404Google Scholar

    [21]

    Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B, Oleynik I I 2017 Chem. Mater. 29 735Google Scholar

    [22]

    Bartlett R J, web site http://www.qtp.ufl.edu/; bartlett/ downloads/polynitrog-en.pdf

    [23]

    Lauderdale W J, Stanton J F, Bartlett R J 1992 J. Phys. Chem. 96 1173Google Scholar

    [24]

    Fathalizadeh A, Pham T, Mickelson W, Zettl A 2014 Nano. Lett. 14 48Google Scholar

    [25]

    Lin J F, Santoro M, Struzhkin V V, Mao H K, Hemley R J, 2004 Rev. Sci. Instrum. 75 3302Google Scholar

  • 图 1  氮化硼纳米管的高分辨电镜图像

    Fig. 1.  High-resolution electron microscope images of the multi-walled boron nitride nanotube.

    图 2  (a)纯N2分子及(b)高含氮量N2@BNNTs样品在低压区的升压拉曼光谱图

    Fig. 2.  The Raman spectra of (a) high nitrogen content N2@BNNTs sample and (b) pure N2 molecules under high pressure.

    图 3  123 GPa压力下高含氮量N2@BNNTs样品(a)激光加热前及(b)激光热后样品腔的显微图像; 红色圆圈内为样品激光加热区域(c)高含氮量N2@BNNTs样品激光加热前后的拉曼光谱

    Fig. 3.  Microscopic images of sample cavity before (a) and after (b) laser heating at 123 GPa. Red circle shows an area where the sample was laser-heated; (c) the Raman spectra of high nitrogen content N2@BNNTs sample before and after laser heating at 123 GPa.

    图 4  (a)高含氮量N2@BNNTs样品在123 GPa压力下激光加热后的卸压拉曼光谱; (b) N2分子内部振动放大图

    Fig. 4.  (a) The Raman spectra of high nitrogen content N2@BNNTs sample during pressure release after laser heating; (b) the Raman spectrum amplification of N2 molecule internal vibration mode.

    图 5  (a), (b) cg-N分解后压力释放至20 GPa时样品腔的显微图像; (c)卸压至0 GPa时样品腔的显微图像

    Fig. 5.  (a), (b) Microscopic images of the sample cavity down to 20 GPa after cg-N decomposition; (c) microscopic image of the sample cavity at 0 GPa.

    图 6  (a)封装液氮后样品腔的显微图像; (b)在122 GPa, 130 GPa以及150 GPa压力下分别激光加热后样品腔的显微图像; (c)低含氮量N2@BNNTs样品的部分升压拉曼光谱及在122 GPa, 130 GPa以及150 GPa压力下分别激光加热后的拉曼光谱

    Fig. 6.  (a) Microscopic image of the sample cavity after encapsulating liquid nitrogen; (b) microscopic images of sample cavities after laser heating at 122 GPa, 130 GPa, and 150 GPa, respectively; (c) the Raman spectra of low nitrogen content N2@BNNTs sample before and after laser heating at 122 GPa, 130 GPa and 150 GPa, respectively.

    图 7  (a)—(d)低含氮量N2@BNNTs样品激光加热后卸压过程中的显微图像; (e) 150 GPa压力下激光加热后的卸压拉曼光谱

    Fig. 7.  (a)–(d) Microscopic images of low nitrogen content N2@BNNTs sample during pressure release after laser heating; (e) Raman spectra of the sample during pressure release after laser heating at 150 GPa.

  • [1]

    Légaré M A, Rang M, Bélanger-Chabot G, Schweizer J I, Krummenacher I, Bertermann R, Arrowsmith M, Holthausen M C, Braunschweig H 2019 Science 363 1329Google Scholar

    [2]

    Qi C, Li S H, Li Y C, Wang Y, Chen X K, Pang S P 2011 J. Mater. Chem. 21 3221Google Scholar

    [3]

    Klapötke T M, Piercey D G 2011 Inorg. Chem. 50 2732Google Scholar

    [4]

    Li Y C, Qi C, Li S H, Zhang H J, Sun C H, Yu Y Z, Pang S P 2010 J. Am. Chem. Soc. 132 12172Google Scholar

    [5]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [6]

    Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [7]

    Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001Google Scholar

    [8]

    Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y 1, Yao Y S, Li B1, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2019 Nat. Commun. 10 4515Google Scholar

    [9]

    Abou-Rachid H, Hu A, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar

    [10]

    VTimoshevskii V, Ji W, Abou-Rachid H, Lussier L S, Guo H 2009 Phys. Rev. B 80 115409Google Scholar

    [11]

    Shi X H, Liu B, Liu S J, Niu S F, Liu S, Liu R, Liu B B 2018 Sci. Rep. 8 13758Google Scholar

    [12]

    Li S, Li H Y, Yao Z, Lu S C 2021 Mater. Today. Commun. 26 101670Google Scholar

    [13]

    Lv H, Yao M G, Li Q J, Liu R, Liu B, Yao Z, Liu D D, Liu Z D, Liu J, Chen Z Q, Zou B, Cui T, Liu B B 2015 Sci. Rep. 5 13234Google Scholar

    [14]

    Wu Z Y, Benchafia E M, Iqbal Z, Wang X Q 2014 Chem. Int. Ed. 53 12555Google Scholar

    [15]

    Zhang C, Sun C, Hu B C, Yu C M, Lu M 2017 Science 355 374Google Scholar

    [16]

    Zhang C, Yang C, Yu C M, Zheng Z S, Sun C G 2017 Angew. Chem. 56 4512Google Scholar

    [17]

    Schneider H, Hafner W, Wokaun A, Olijnyk H 1992 J. Chem. Phys. 96 8046Google Scholar

    [18]

    Schiferl D, Buchsbaum S, Mills R L 1985 J. Phys. Chem. 89 2324Google Scholar

    [19]

    Eremets M I, Popov Yu M, Trojan I A, Denisov V N, Boehle R R 2004 J. Chem. Phys. 120 10618Google Scholar

    [20]

    Medvedev S A, Trojan I A, Eremets M I, Palasyuk T, Klapotke T M, Evers J 2009 J. Phys. Condens. Matter. 21 195404Google Scholar

    [21]

    Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B, Oleynik I I 2017 Chem. Mater. 29 735Google Scholar

    [22]

    Bartlett R J, web site http://www.qtp.ufl.edu/; bartlett/ downloads/polynitrog-en.pdf

    [23]

    Lauderdale W J, Stanton J F, Bartlett R J 1992 J. Phys. Chem. 96 1173Google Scholar

    [24]

    Fathalizadeh A, Pham T, Mickelson W, Zettl A 2014 Nano. Lett. 14 48Google Scholar

    [25]

    Lin J F, Santoro M, Struzhkin V V, Mao H K, Hemley R J, 2004 Rev. Sci. Instrum. 75 3302Google Scholar

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [3] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [5] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [6] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [8] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [9] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [11] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [13] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [14] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [15] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性. 物理学报, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [16] 赵艳红, 刘海风, 张其黎. 高温高压下爆轰产物中不同种分子间的相互作用. 物理学报, 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [17] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [18] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究. 物理学报, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [19] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [20] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
计量
  • 文章访问数:  2228
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-02-04
  • 上网日期:  2024-02-06
  • 刊出日期:  2024-04-20

/

返回文章
返回