-
近年来单结太阳能电池的光电转换效率逐步提高, 但其最高效率受到Shockley-Queisser (SQ)极限的限制. 为了超越SQ极限, 学者们提出了叠层太阳能电池. 本工作结合第一性原理计算和SCAPS-1D器件模拟对黄铜矿化合物CuGaSe2/CuInSe2叠层太阳能电池进行了系统的理论研究. 首先通过第一性原理计算获取了CuGaSe2 (CGS)的微观电子结构、缺陷特性及对应的宏观性能参数, 作为后续器件模拟CGS太阳能电池的输入参数. 随后采用SCAPS-1D软件分别对单结CGS与CuInSe2 (CIS)太阳能电池进行了仿真模拟. 单结CIS太阳能电池的模拟结果与实验值具有良好的一致性. 对单结CGS电池而言, 在短路电流(Jsc)最高的生长环境下进一步模拟发现, 将电子传输层(ETL)换为ZnSe后可提高CGS太阳能电池的开路电压(Voc)和PCE. 最后, 将优化后的CGS与CIS太阳能电池进行了两端(2T)单片串联的器件模拟, 结果显示在生长环境为富Cu、富Ga、贫Se, 生长温度为700 K时, 2T单片CGS/CIS叠层太阳能电池的PCE最高为28.91%, 高于当前最高的单结太阳能电池效率, 展现出良好的应用前景.
-
关键词:
- 第一性原理计算 /
- SCAPS-1D /
- p型吸收层材料CuGaSe2 /
- 叠层太阳能电池
Solar cells have attracted much attention, for they can convert solar energy directly into electric energy, and have been widely utilized in manufacturing industry and people’s daily life. Although the power conversion efficiency (PCE) of single-junction solar cells has gradually improved in recent years, its maximum efficiency is still limited by the Shockley-Queisser (SQ) limit of single-junction solar cells. To exceed the SQ limit and further obtain high-efficiency solar cells, the concept of tandem solar cells has been proposed. In this work, the chalcopyrite CuGaSe2/CuInSe2 tandem solar cells are studied systematically in theory by combining first-principle calculations and SCAPS-1D device simulations. Firstly, the electronic structure, defect properties and corresponding macroscopic performance parameters of CuGaSe2 (CGS) are obtained by first-principles calculations, and are used as input parameters for subsequent device simulations of CGS solar cells. Then, the single-junction CGS and CuInSe2 (CIS) solar cells are simulated by using SCAPS-1D software, respectively. The simulation results for the single junction CIS solar cells are in good agreement with the experimental values. For single-junction CGS cells, the device simulations reveal that the CGS single-junction solar cells have the highest short-circuit current (Jsc) and PCE under the Cu-rich, Ga-rich and Se-poor chemical growth condition. Further optimization in the growth environment with the highest short circuit current (Jsc) shows that the open-circuit voltage (Voc) and PCE of CGS solar cells can be improved by replacing the electron transport layer (ETL) with ZnSe. Finally, after the optimized CGS and CIS solar cells are connected in series with two-terminal (2T) monolithic tandem solar cell, the device simulation results show that under the growth temperature of 700 K and the growth environment of Cu-rich, Ga-rich, and Se-poor, with ZnSe serving as the ETL, the CGS thickness of 2000 nm and the CIS thickness of 1336 nm, the PCE of 2T monolithic CGS/CIS tandem solar cell can reach 28.91%, which is higher than the ever-recorded efficiency of the current single-junction solar cells, and shows that this solar cell has a good application prospect.[1] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[2] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar
Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar
[3] Kasaeian A, Eshghi A T, Sameti M 2015 Renewable Sustainable Energy Rev. 43 584Google Scholar
[4] Lin H, Yang M, Ru X N, Wang G S, Yin S, Peng F G, Hong C J, Qu M H, Lu J X, Fang L, Han C, Procel P, Isabella O, Gao P Q, Li Z G, Xu X X 2023 Nat. Energy 8 789Google Scholar
[5] Chen W, Hong J L, Yuan X L, Liu J R 2016 J. Cleaner Prod. 112 1025Google Scholar
[6] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar
[7] Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X J 2024 Prog. Photovoltaics 32 3Google Scholar
[8] Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X 4 1548305Google Scholar
[9] Wang J Z, Qi Y C, Zheng H F, Wang R L, Bai S Y, Liu Y N, Liu Q, Xiao J, Zou D C, Hou S C 2023 J. Mater. Chem. A 11 13201Google Scholar
[10] Miyasaka T, Kulkarni A, Kim G M, Öz S, Jena A K 2020 Adv. Energy Mater. 10 1902500Google Scholar
[11] Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022 Chin. Phys. Lett. 39 046101Google Scholar
[12] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军 2019 物理学报 68 157101Google Scholar
Wang X T, Fu Y H, Na G R, Li H D, Zhang L J 2019 Acta Phys. Sin. 68 157101Google Scholar
[13] Green M A, Bremner S P 2017 Nat. Mater. 16 23Google Scholar
[14] Wang R, Huang T Y, Xue J J, Tong J H, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar
[15] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前 2022 物理学报 71 038801Google Scholar
Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71 038801Google Scholar
[16] Yue M, Wang Y, Liang H L, Mei Z X 2022 Chinese Phys. B 31 088801Google Scholar
[17] Sharif M N, Yang J S, Zhang X K, Tang Y H, Wang K F 2023 Solar RRL 7 2300156Google Scholar
[18] Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095Google Scholar
[19] Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390Google Scholar
[20] Chen L J, Niu G X, Niu L B, Song Q L 2022 Chin. Phys. B 31 038802Google Scholar
[21] Xie X P, Bai Q Y, Liu G, Dong P, Liu D W, Ni Y F, Liu C B, Xi H, Zhu W D, Chen D Z, Zhang C F 2022 Chin. Phys. B 31 108801Google Scholar
[22] Adhyaksa G W P, Johlin E, Garnett E C 2017 Nano Lett. 17 5206Google Scholar
[23] Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476Google Scholar
[24] Todorov T K, Bishop D M, Lee Y S 2018 Sol. Energy Mater. Sol. Cells 180 350Google Scholar
[25] Young D L, Abushama J, Noufi R, Xiaonan Li, Keane J, Gessert T A, Ward J S, Contreras M, Symko-Davies M, Coutts T J 2002 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 pp608–611
[26] Nishiwaki S, Siebentritt S, Walk P, Lux-Steiner M Ch 2003 Prog. Photovoltaics 11 243Google Scholar
[27] Schmid M, Caballero R, Klenk R, Krč J, Rissom T, Topi M, Lux-Steiner M Ch 2010 EPJ Photovolt. 1 10601
[28] Outlaw-Spruell K, Crunk J, Septina W, Muzzillo C P, Zhu K, Gaillard N 2022 ACS Appl. Mater. Interfaces 14 54607Google Scholar
[29] Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar
[30] Ramanujam J, Singh U P 2017 Energy Environ. Sci. 10 1306Google Scholar
[31] Xiao H, Tahir-Kheli J, Goddard W A 2011 J. Phys. Chem. Lett. 2 212Google Scholar
[32] Ishizuka S 2019 Phys. Status Solidi A 216 1800873Google Scholar
[33] Siebentritt S, Schuler S 2003 J. Phys. Chem. Solids 64 1621Google Scholar
[34] Feurer T, Carron R, Torres Sevilla G, Fu F, Pisoni S, Romanyuk Y E, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1901428Google Scholar
[35] Gong J B, Gao D Q, Ma Z Y, Yang X K, Zhang J J, Liu X X, Chen C, Tang J, Da B, Li J M, Fang G J, Xiao X D 2022 Solar RRL 6 2200766Google Scholar
[36] Prathapani S, Zhan Y Q 2021 Energy Technol. 9 2100193Google Scholar
[37] Zhang Y, Wang Q, Zhang X B, Peng N, Liu Z Q, Chen B Z, Huang S S, Wang Z Y 2017 Chin. Phys. Lett. 34 028802Google Scholar
[38] Bush K A, Manzoor S, Frohna K, Yu Z S J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[39] Hibberd C J, Chassaing E, Liu W, Mitzi D B, Lincot D, Tiwari A N 2010 Prog. Photovoltaics 18 434Google Scholar
[40] Kemell M, Ritala M, Leskelä M 2005 Crit. Rev. Solid State Mater. Sci. 30 1Google Scholar
[41] Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar
[42] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar
Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801Google Scholar
[43] Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman Md F, Rubel M H K, Islam Md R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar
[44] Hossain M K, Toki G F I, Madan J, Pandey R, Bencherif H, Mohammed M K A, Islam Md R, Rubel M H K, Rahman Md F, Bhattarai S, Samajdar D P 2023 New J. Chem. 47 8602Google Scholar
[45] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar
[46] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[47] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar
[48] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[49] Pindolia G, Shinde S M, Jha P K 2022 Sol. Energy 236 802Google Scholar
[50] Choudhary K, Bercx M, Jiang J, Pachter R, Lamoen D, Tavazza F 2019 Chem. Mater. 31 5900Google Scholar
[51] Minbashi M, Ghobadi A, Ehsani M H, Dizaji H R, Memarian N 2018 Sol. Energy 176 520Google Scholar
[52] Madan J, Shivani, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar
[53] Gupta G K, Dixit A 2018 Opt. Mater. 82 11Google Scholar
[54] Islam Md T, Jani Md R, Islam A F, Shorowordi K Md, Chowdhury S, Nishat S S, Ahmed S 2021 IEEE Trans. Electron Devices 68 618Google Scholar
[55] Houck D W, Siegler T D, Korgel B A 2019 ACS Appl. Energy Mater. 2 1494Google Scholar
[56] Wang R, Dou B Y, Zheng Y F, Wei S H 2022 Sci. China: Phys. , Mech. Astron. 65 107311Google Scholar
[57] Liu X H, Hu Y 2022 J. Mater. Sci. Mater. Electron. 33 6253Google Scholar
[58] Persson C 2008 Appl. Phys. Lett. 93 072106Google Scholar
[59] Chowdhury M S, Shahahmadi S A, Chelvanathan P, Tiong S K, Amin N, Techato K, Nuthammachot N, Chowdhury T, Suklueng M 2020 Results Phys. 16 102839Google Scholar
[60] Simya O K, Mahaboobbatcha A, Balachander K 2015 Superlattice Microstruct. 82 248Google Scholar
[61] Gupta G K, Dixit A 2020 Int. J. Energy Res. 44 3724Google Scholar
[62] Ahmed S, Jannat F, Khan Md A K, Alim M A 2021 Optik 225 165765Google Scholar
[63] Saad M, Kassis A 2011 Sol. Energy Mater. Sol. Cells 95 1927Google Scholar
[64] Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 77 415Google Scholar
[65] Aida Y, Depredurand V, Larsen J K, Arai H, Tanaka D, Kurihara M, Siebentritt S 2015 Prog. Photovoltaics 23 754Google Scholar
[66] Wang J Q, Wang Z H, Wang W, Wang Y, Hu X L, Liu J X, Gong X Z, Miao W L, Ding L L, Li X B, Tang J G 2022 Nanoscale 14 6709Google Scholar
[67] Abdelaziz S, Zekry A, Shaker A, Abouelatta M 2020 Opt. Mater. 101 109738Google Scholar
[68] Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar
[69] Ganose A M, Scanlon D O 2016 J. Mater. Chem. C 4 1467Google Scholar
[70] Bencherif H, Meddour F, Elshorbagy M H, Khalid Hossain M, Cuadrado A, Abdi M A, Bendib T, Kouda S, Alda J 2022 Micro Nanostruct. 171 207403Google Scholar
[71] Alsalme A, Alsaeedi H 2022 Nanomaterials 13 96Google Scholar
[72] Moiz S A, Alzahrani M S, Alahmadi A N M 2022 Polymers 14 3610Google Scholar
[73] Dai C M, Xu P, Huang M L, Cai Z H, Han D, Wu Y N, Chen S Y 2019 APL Mater. 7 081122Google Scholar
[74] Huang D, Persson C, Ju Z P, Dou M F, Yao C M, Guo J 2014 EPL 105 37007Google Scholar
[75] Ju Z P, Lin C Q, Xue Y, Huang D, Persson C 2023 J. Phys. Chem. Solids 183 111655Google Scholar
[76] Green M A 1990 J. Appl. Phys. 67 2944Google Scholar
[77] Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar
[78] Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar
[79] Huang D, Lin C Q, Xue Y, Chen S Y, Zhao Y J, Persson C 2022 Phys. Chem. Chem. Phys. 24 25258Google Scholar
[80] Van De Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar
[81] Chu W B, Zheng Q J, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar
[82] Wei J C, Jiang L L, Huang M L, Wu Y N, Chen S Y 2021 Adv. Funct. Mater. 31 2104913Google Scholar
[83] Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L S, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar
[84] Huang M L, Cai Z H, Wang S S, Gong X G, Wei S H, Chen S Y 2021 Small 17 2102429Google Scholar
[85] Ma J, Wei S H, Gessert T A, Chin K K 2011 Phys. Rev. B 83 245207Google Scholar
[86] Wang C L, Zhao Y, Ma T S, An Y D, He R, Zhu J W, Chen C, Ren S Q, Fu F, Zhao D W, Li X F 2022 Nat. Energy 7 744Google Scholar
[87] Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994Google Scholar
[88] Fan S W, Chen Y, Yang L 2022 J. Phys. Chem. C 126 19446Google Scholar
[89] Choi J W, Shin B, Gorai P, Hoye R L Z, Palgrave R 2022 ACS Energy Lett. 7 1553Google Scholar
[90] Patel P K 2021 Sci. Rep. 11 3082Google Scholar
[91] Deepthi Jayan K, Sebastian V 2021 Sol. Energy 217 40Google Scholar
[92] Hossain M K, Uddin M S, Toki G F I, Mohammed M K A, Pandey R, Madan J, Rahman Md F, Islam Md R, Bhattarai S, Bencherif H, Samajdar D P, Amami M, Dwivedi D K 2023 RSC Adv. 13 23514Google Scholar
[93] Liang H M, Feng J G, Rodríguez-Gallegos C D, Krause M, Wang X, Alvianto E, Guo R J, Liu H H, Kothandaraman R K, Carron R, Tiwari A N, Peters I M, Fu F, Hou Y 2023 Joule 7 2859Google Scholar
[94] Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar
[95] Xu Q J, Zhao Y, Zhang X D 2020 Sol. RRL 4 1900206Google Scholar
[96] Singh V K, Srivastava S, Singh A K, Chauhan M S, Patel S P, Singh R S 2023 Environ. Sci. Pollut. Res. 30 98747Google Scholar
[97] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar
Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar
-
图 4 (a) 形成稳定CuGaSe2所允许的相对化学势范围(灰色区域), A—G点分别代表7个不同化学势极限条件; (b)—(h)不同化学势条件下CuGaSe2中各本征缺陷的形成能
Fig. 4. (a) Allowable relative chemical potential range (gray area) for a stable CuGaSe2, and the A—G points represent seven different relative chemical potential conditions; (b)—(h) formation energies of intrinsic defects in CuGaSe2 under different relative chemical potential conditions.
表 1 用于模拟初始单结CGS和CIS太阳能电池各材料的输入参数. 输入参数取自参考文献以及第一性原理计算值(用加粗的黑体标注)
Table 1. Input parameters for each material in the initial single-junction CGS and CIS device simulations. Parameters are obtained from references and first principles calculations (highlighted in bold).
参数 CuInSe2[55] CuGaSe2[56–58] CdS[56,59] ZnO[56,60] Al:ZnO[61] 厚度/nm 3000 2000 50 70 200 带隙/eV 1.04 1.70 2.40 3.30 3.30 电子亲和能/eV 4.5 3.9 4.2 4.6 4.6 介电常数 13.6 10.6 10.0 9.0 9.0 导带有效态密度/(1018 cm–3) 2.20 1.31 2.20 2.20 2.20 价带有效态密度/(1018 cm–3) 18.00 9.14 18.00 18.00 18.00 电子迁移率/(cm·V–1·s–1) 10 100 100 100 100 空穴迁移率/(cm·V–1·s–1) 10 25 25 25 25 施主浓度/(1017 cm–3) 0 0 1 10 1000 受主浓度/(1016 cm–3) 2 变量 0 0 0 缺陷类型 中性 变量 中性 中性 单受主(–/0) 电子俘获截面/(10–17 cm2) 10000 1 1 100 100 空穴俘获截面/(10–15 cm2) 1 1 1000 1000 1 能量分布 单一 单一 单一 单一 单一 缺陷能级 Et 的参考 高于最高价带能级 高于最高价带能级 高于最高价带能级 高于最高价带能级 高于最高价带能级 相对于参考能级的能量/eV 0.6 变量 0.6 0.6 0.6 缺陷浓度/(1015 cm–3) 1 变量 100 100 10 表 2 界面缺陷的输入参数
Table 2. Input parameters for interface defects.
表 3 各种ETL的输入参数
Table 3. Input parameters for various ETLs.
参数 TiO2[66–68] SnO2[49,69,70] ZnSe[67,71,72] 厚度/nm 30 50 50 带隙/eV 3.20 3.60 2.67 电子亲和能/eV 3.90 4.00 4.09 介电常数 9.0 9.0 8.6 导带有效态密度/(1017 cm–3) 10000 2.2 22 价带有效态密度/(1017 cm–3) 2000 2.2 180 电子迁移率/(cm·V–1·s–1) 20 200 400 空穴迁移率/(cm·V–1·s–1) 10 80 110 施主浓度/(1019 cm–3) 1 1 1 受主浓度/cm–3 0 0 0 缺陷类型 中性 中性 中性 电子俘获截面/(10–15 cm2) 1 1 1 空穴俘获截面/(10–15 cm2) 1 1 1 能量分布 单一 单一 单一 缺陷能级 Et 的参考 高于最高价带能级 高于最高价带能级 高于最高价带能级 相对于参考能级的能量/eV 0.6 0.6 0.6 缺陷浓度/(1015 cm–3) 1 1 1 表 4 本工作计算获得及文献[74]报道的CuGaSe2电子和空穴的有效质量(单位: me)
Table 4. Effective masses of electrons and holes in CuGaSe2 from this work and Ref. [74] (unit: me).
有效质量 本工作 文献[74] 电子 m*100, m*010 0.15 0.10 m*001 0.13 0.09 电子平均有效质量 0.14 0.09 空穴 m*100, m*010 0.62 0.77 m*001 0.15 0.10 空穴平均有效质量 0.51 0.63 表 6 不同生长温度下电流匹配后CGS顶部电池(在AM 1.5G 1 sun光谱下照射)、CIS底部电池(透过CGS电池后的光谱下照射)及2T单片叠层器件的光伏性能参数
Table 6. Photovoltaic performance parameters of CGS top cell (irradiated at AM 1.5G 1 sun), CIS bottom cell (irradiated at the transmission spectrum after CGS cell) and 2T monolithic tandem solar cell after current matching at different growth temperatures
电池 厚度/nm 开路电压/V 短路电流
/(mA·cm–2)填充因子/% 光电转换效率/% A-600 K-CGS顶部电池 2000 1.06 20.58 85.63 18.63 CIS底部电池 1820 0.59 20.58 77.59 9.42 2T单片叠层太阳能电池 — 1.65 20.58 82.60 28.05 A-700 K-CGS顶部电池 2000 1.16 19.99 86.04 19.92 CIS底部电池 1336 0.58 19.99 76.68 8.99 2T单片叠层太阳能电池 — 1.74 19.99 83.12 28.91 A-800 K-CGS顶部电池 2000 1.22 19.39 86.40 20.35 CIS底部电池 1050 0.57 19.39 75.81 8.38 2T单片叠层太阳能电池 — 1.79 19.39 82.78 28.73 A-900 K-CGS顶部电池 2000 1.03 17.68 82.60 15.07 CIS底部电池 636 0.55 17.68 73.33 7.13 2T单片叠层太阳能电池 — 1.58 17.68 79.47 22.20 -
[1] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[2] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar
Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar
[3] Kasaeian A, Eshghi A T, Sameti M 2015 Renewable Sustainable Energy Rev. 43 584Google Scholar
[4] Lin H, Yang M, Ru X N, Wang G S, Yin S, Peng F G, Hong C J, Qu M H, Lu J X, Fang L, Han C, Procel P, Isabella O, Gao P Q, Li Z G, Xu X X 2023 Nat. Energy 8 789Google Scholar
[5] Chen W, Hong J L, Yuan X L, Liu J R 2016 J. Cleaner Prod. 112 1025Google Scholar
[6] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar
[7] Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X J 2024 Prog. Photovoltaics 32 3Google Scholar
[8] Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X 4 1548305Google Scholar
[9] Wang J Z, Qi Y C, Zheng H F, Wang R L, Bai S Y, Liu Y N, Liu Q, Xiao J, Zou D C, Hou S C 2023 J. Mater. Chem. A 11 13201Google Scholar
[10] Miyasaka T, Kulkarni A, Kim G M, Öz S, Jena A K 2020 Adv. Energy Mater. 10 1902500Google Scholar
[11] Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022 Chin. Phys. Lett. 39 046101Google Scholar
[12] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军 2019 物理学报 68 157101Google Scholar
Wang X T, Fu Y H, Na G R, Li H D, Zhang L J 2019 Acta Phys. Sin. 68 157101Google Scholar
[13] Green M A, Bremner S P 2017 Nat. Mater. 16 23Google Scholar
[14] Wang R, Huang T Y, Xue J J, Tong J H, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar
[15] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前 2022 物理学报 71 038801Google Scholar
Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71 038801Google Scholar
[16] Yue M, Wang Y, Liang H L, Mei Z X 2022 Chinese Phys. B 31 088801Google Scholar
[17] Sharif M N, Yang J S, Zhang X K, Tang Y H, Wang K F 2023 Solar RRL 7 2300156Google Scholar
[18] Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095Google Scholar
[19] Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390Google Scholar
[20] Chen L J, Niu G X, Niu L B, Song Q L 2022 Chin. Phys. B 31 038802Google Scholar
[21] Xie X P, Bai Q Y, Liu G, Dong P, Liu D W, Ni Y F, Liu C B, Xi H, Zhu W D, Chen D Z, Zhang C F 2022 Chin. Phys. B 31 108801Google Scholar
[22] Adhyaksa G W P, Johlin E, Garnett E C 2017 Nano Lett. 17 5206Google Scholar
[23] Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476Google Scholar
[24] Todorov T K, Bishop D M, Lee Y S 2018 Sol. Energy Mater. Sol. Cells 180 350Google Scholar
[25] Young D L, Abushama J, Noufi R, Xiaonan Li, Keane J, Gessert T A, Ward J S, Contreras M, Symko-Davies M, Coutts T J 2002 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 pp608–611
[26] Nishiwaki S, Siebentritt S, Walk P, Lux-Steiner M Ch 2003 Prog. Photovoltaics 11 243Google Scholar
[27] Schmid M, Caballero R, Klenk R, Krč J, Rissom T, Topi M, Lux-Steiner M Ch 2010 EPJ Photovolt. 1 10601
[28] Outlaw-Spruell K, Crunk J, Septina W, Muzzillo C P, Zhu K, Gaillard N 2022 ACS Appl. Mater. Interfaces 14 54607Google Scholar
[29] Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar
[30] Ramanujam J, Singh U P 2017 Energy Environ. Sci. 10 1306Google Scholar
[31] Xiao H, Tahir-Kheli J, Goddard W A 2011 J. Phys. Chem. Lett. 2 212Google Scholar
[32] Ishizuka S 2019 Phys. Status Solidi A 216 1800873Google Scholar
[33] Siebentritt S, Schuler S 2003 J. Phys. Chem. Solids 64 1621Google Scholar
[34] Feurer T, Carron R, Torres Sevilla G, Fu F, Pisoni S, Romanyuk Y E, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1901428Google Scholar
[35] Gong J B, Gao D Q, Ma Z Y, Yang X K, Zhang J J, Liu X X, Chen C, Tang J, Da B, Li J M, Fang G J, Xiao X D 2022 Solar RRL 6 2200766Google Scholar
[36] Prathapani S, Zhan Y Q 2021 Energy Technol. 9 2100193Google Scholar
[37] Zhang Y, Wang Q, Zhang X B, Peng N, Liu Z Q, Chen B Z, Huang S S, Wang Z Y 2017 Chin. Phys. Lett. 34 028802Google Scholar
[38] Bush K A, Manzoor S, Frohna K, Yu Z S J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[39] Hibberd C J, Chassaing E, Liu W, Mitzi D B, Lincot D, Tiwari A N 2010 Prog. Photovoltaics 18 434Google Scholar
[40] Kemell M, Ritala M, Leskelä M 2005 Crit. Rev. Solid State Mater. Sci. 30 1Google Scholar
[41] Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar
[42] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar
Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801Google Scholar
[43] Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman Md F, Rubel M H K, Islam Md R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar
[44] Hossain M K, Toki G F I, Madan J, Pandey R, Bencherif H, Mohammed M K A, Islam Md R, Rubel M H K, Rahman Md F, Bhattarai S, Samajdar D P 2023 New J. Chem. 47 8602Google Scholar
[45] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar
[46] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[47] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar
[48] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[49] Pindolia G, Shinde S M, Jha P K 2022 Sol. Energy 236 802Google Scholar
[50] Choudhary K, Bercx M, Jiang J, Pachter R, Lamoen D, Tavazza F 2019 Chem. Mater. 31 5900Google Scholar
[51] Minbashi M, Ghobadi A, Ehsani M H, Dizaji H R, Memarian N 2018 Sol. Energy 176 520Google Scholar
[52] Madan J, Shivani, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar
[53] Gupta G K, Dixit A 2018 Opt. Mater. 82 11Google Scholar
[54] Islam Md T, Jani Md R, Islam A F, Shorowordi K Md, Chowdhury S, Nishat S S, Ahmed S 2021 IEEE Trans. Electron Devices 68 618Google Scholar
[55] Houck D W, Siegler T D, Korgel B A 2019 ACS Appl. Energy Mater. 2 1494Google Scholar
[56] Wang R, Dou B Y, Zheng Y F, Wei S H 2022 Sci. China: Phys. , Mech. Astron. 65 107311Google Scholar
[57] Liu X H, Hu Y 2022 J. Mater. Sci. Mater. Electron. 33 6253Google Scholar
[58] Persson C 2008 Appl. Phys. Lett. 93 072106Google Scholar
[59] Chowdhury M S, Shahahmadi S A, Chelvanathan P, Tiong S K, Amin N, Techato K, Nuthammachot N, Chowdhury T, Suklueng M 2020 Results Phys. 16 102839Google Scholar
[60] Simya O K, Mahaboobbatcha A, Balachander K 2015 Superlattice Microstruct. 82 248Google Scholar
[61] Gupta G K, Dixit A 2020 Int. J. Energy Res. 44 3724Google Scholar
[62] Ahmed S, Jannat F, Khan Md A K, Alim M A 2021 Optik 225 165765Google Scholar
[63] Saad M, Kassis A 2011 Sol. Energy Mater. Sol. Cells 95 1927Google Scholar
[64] Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 77 415Google Scholar
[65] Aida Y, Depredurand V, Larsen J K, Arai H, Tanaka D, Kurihara M, Siebentritt S 2015 Prog. Photovoltaics 23 754Google Scholar
[66] Wang J Q, Wang Z H, Wang W, Wang Y, Hu X L, Liu J X, Gong X Z, Miao W L, Ding L L, Li X B, Tang J G 2022 Nanoscale 14 6709Google Scholar
[67] Abdelaziz S, Zekry A, Shaker A, Abouelatta M 2020 Opt. Mater. 101 109738Google Scholar
[68] Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar
[69] Ganose A M, Scanlon D O 2016 J. Mater. Chem. C 4 1467Google Scholar
[70] Bencherif H, Meddour F, Elshorbagy M H, Khalid Hossain M, Cuadrado A, Abdi M A, Bendib T, Kouda S, Alda J 2022 Micro Nanostruct. 171 207403Google Scholar
[71] Alsalme A, Alsaeedi H 2022 Nanomaterials 13 96Google Scholar
[72] Moiz S A, Alzahrani M S, Alahmadi A N M 2022 Polymers 14 3610Google Scholar
[73] Dai C M, Xu P, Huang M L, Cai Z H, Han D, Wu Y N, Chen S Y 2019 APL Mater. 7 081122Google Scholar
[74] Huang D, Persson C, Ju Z P, Dou M F, Yao C M, Guo J 2014 EPL 105 37007Google Scholar
[75] Ju Z P, Lin C Q, Xue Y, Huang D, Persson C 2023 J. Phys. Chem. Solids 183 111655Google Scholar
[76] Green M A 1990 J. Appl. Phys. 67 2944Google Scholar
[77] Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar
[78] Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar
[79] Huang D, Lin C Q, Xue Y, Chen S Y, Zhao Y J, Persson C 2022 Phys. Chem. Chem. Phys. 24 25258Google Scholar
[80] Van De Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar
[81] Chu W B, Zheng Q J, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar
[82] Wei J C, Jiang L L, Huang M L, Wu Y N, Chen S Y 2021 Adv. Funct. Mater. 31 2104913Google Scholar
[83] Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L S, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar
[84] Huang M L, Cai Z H, Wang S S, Gong X G, Wei S H, Chen S Y 2021 Small 17 2102429Google Scholar
[85] Ma J, Wei S H, Gessert T A, Chin K K 2011 Phys. Rev. B 83 245207Google Scholar
[86] Wang C L, Zhao Y, Ma T S, An Y D, He R, Zhu J W, Chen C, Ren S Q, Fu F, Zhao D W, Li X F 2022 Nat. Energy 7 744Google Scholar
[87] Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994Google Scholar
[88] Fan S W, Chen Y, Yang L 2022 J. Phys. Chem. C 126 19446Google Scholar
[89] Choi J W, Shin B, Gorai P, Hoye R L Z, Palgrave R 2022 ACS Energy Lett. 7 1553Google Scholar
[90] Patel P K 2021 Sci. Rep. 11 3082Google Scholar
[91] Deepthi Jayan K, Sebastian V 2021 Sol. Energy 217 40Google Scholar
[92] Hossain M K, Uddin M S, Toki G F I, Mohammed M K A, Pandey R, Madan J, Rahman Md F, Islam Md R, Bhattarai S, Bencherif H, Samajdar D P, Amami M, Dwivedi D K 2023 RSC Adv. 13 23514Google Scholar
[93] Liang H M, Feng J G, Rodríguez-Gallegos C D, Krause M, Wang X, Alvianto E, Guo R J, Liu H H, Kothandaraman R K, Carron R, Tiwari A N, Peters I M, Fu F, Hou Y 2023 Joule 7 2859Google Scholar
[94] Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar
[95] Xu Q J, Zhao Y, Zhang X D 2020 Sol. RRL 4 1900206Google Scholar
[96] Singh V K, Srivastava S, Singh A K, Chauhan M S, Patel S P, Singh R S 2023 Environ. Sci. Pollut. Res. 30 98747Google Scholar
[97] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar
Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar
计量
- 文章访问数: 3658
- PDF下载量: 98
- 被引次数: 0