搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用离子阻停对电子俘获致核激发的研究

贾晨旭 丁兵 滑伟 郭松 强赟华 陈红星 韦锐 周小红

引用本文:
Citation:

利用离子阻停对电子俘获致核激发的研究

贾晨旭, 丁兵, 滑伟, 郭松, 强赟华, 陈红星, 韦锐, 周小红

Study of nuclear excitation by electron capture via the stopping of highly charged ions

Jia Chen-Xu, Ding Bing, Hua Wei, Guo Song, Qiang Yun-Hua, Chen Hong-Xing, Wei Rui, Zhou Xiao-Hong
PDF
HTML
导出引用
  • 当特定能量的自由电子被原子核外电子轨道俘获时, 有可能导致原子核被共振激发, 这就是电子俘获致核激发. 该机制的一个应用愿景是通过操纵电子使同核异能态所储存的核能按照人们的需求释放出来. 如果能够实现这种技术, 有望为核能的储存和利用带来巨大变革. 本文对比了近年来基于加速器装置, 在高电荷态离子阻停过程中测量电子俘获致核激发几率的两次实验研究工作. 对于两次测量结果的不一致, 从误差水平评估这一个新的角度分析了可能的原因. 此外, 通过评估四种可能的熔合蒸发反应道, 发现94Zr束流和氦气靶可能是利用次级束开展下一步实验工作的理想弹靶组合.
    The long-lived isomer is a potential energy-storage material with good energy storage density and storage period. However, releasing the stored energy from such an isomer is challenging. A recognized method is isomer depletion: the isomer is excited to an adjacent short-lived energy level, followed by de-excitation to the ground state, releasing all the stored energy. Six possible mechanisms for isomer depletion have been proposed, i.e. photoabsorption, coulomb excitation, inelastic scattering, nuclear excitation by electron transition, nuclear excitation by electron capture (NEEC), and electronic bridge. Among them, NEEC has attracted significant attention in recent years.The NEEC occurs when a free electron is captured into an empty atomic orbital, with the nucleus excited simultaneously. To observe the NEEC, one can utilize the stopping process of high-velocity, high-charge-state ions in solid materials. As injected into a stopping material, the ions will be decelerated and capture electrons in the material. In the resonant process of NEEC, the sum of the binding energy and the kinetic energy of the free electron matches the energy required for nuclear excitation. If they do not match, or if the orbitals are already occupied by electrons, the NEEC cannot occur, as indicated by the red arrows in the figure. $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ is an ideal candidate for NEEC measurements. It is an isomeric state with an excitation energy of 2.4 MeV, a spin-parity of $21/2 ^+ $, and a half-life of 6.85 h. In addition, there is an energy level with a spin-parity of $17/2 ^+ $ and half-life of 3.5 ns; its excitation energy is 4.8-keV higher than that of $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ and primarily de-excites to the $ 13/2^+ $ state through a 268-keV gamma ray. This level is referred to as the triggering level in the NEEC process. Once excited to the triggering level, the nucleus decays immediately to the ground state, releasing energy of about 2.4 MeV.In 2018, Chiara et al. reported the first experimental observation of $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ isomer depletion with a probability of 1.0(3)%, which was attributed to the NEEC mechanism. However, the following theoretical calculations fail to reproduce such a high probability. In 2022, another experiment was devoted to measuring the depletion of $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ in the stopping process. The measurements were performed at the Heavy Ion Research Facility in Lanzhou. However, no characteristic 268-keV transition caused by isomer depletion was observed, and it was inferred that the upper limit of the excitation probability was about $2\times 10^{-5} $, which is different from the previously reported value of 1%. The beam energy in the Lanzhou experiment is lower than that of the previous data, which can lead to different depletion probabilities. Thus, further experiments are required to clarify this issue.In this study, two experiments related to NEEC are conducted, the reliability of the experimental results is evaluated from a new perspective of error analysis, and a design scheme is provided for implementing further experiments. According to the proposed experimental setup, the recoil energy is considerably increased and particle-identification devices are added. The detectors for particle identification can cause energy loss, thus the increasing of the recoil energy is also a prerequisite for particle identification. Considering the recoil energy, production cross-section, and the population of high-spin states that can decay to$ ^{93{\mathrm{m}}} {\mathrm{Mo}} $, we recommend the $ ^{94}{\mathrm{Zr}}+ ^{4}{\mathrm{He }}$ as the beam-target candidate for future experiments based on the secondary beam line. In addition, a simple design for particle identification is also introduced in this study.
      通信作者: 丁兵, dbing@impcas.ac.cn ; 滑伟, huaw@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175257, 12375128)和广东省自然科学基金(批准号: S2012010010306)资助的课题.
      Corresponding author: Ding Bing, dbing@impcas.ac.cn ; Hua Wei, huaw@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175257, 12375128) and the Natural Science Foundation of Guangdong Province, China (Grant No. S2012010010306).
    [1]

    Walker P, Podolyák Z 2020 Phys. Scr. 95 044004Google Scholar

    [2]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin. Phys. C 41 030001Google Scholar

    [3]

    Elekes Z, Timar J 2015 Nucl. Data Sheets 129 191Google Scholar

    [4]

    Hult M, Gasparro J, Marissens G, Lindahl P, Wätjen U, Johnston P N, Wagemans C, Köhler M 2006 Phys. Rev. C 74 054311Google Scholar

    [5]

    Smith M B, Walker P M, Ball G C, Carroll J J, Garrett P E, Hackman G, Propri R, Sarazin F, Scraggs H C 2003 Phys. Rev. C 68 031302Google Scholar

    [6]

    郑人洲, 陆景彬, 王宇, 李潇祎, 张雪, 陈子怡, 梁磊, 刘玉敏 2023 原子核物理评论 40 385Google Scholar

    Zheng R Z, Lu J B, Wang Y, Li X Y, Zhang X, Chen Z Y, Liang L, Liu Y M 2023 Nuclear Physics Review 40 385Google Scholar

    [7]

    Matinyan S 1998 Phys. Rep. 298 199Google Scholar

    [8]

    Collins C B, Davanloo F, Iosif M C, Dussart R, Hicks J M, Karamian S A, Ur C A, Popescu I I, Kirischuk V I, Carroll J J, Roberts H E, McDaniel P, Crist C E 1999 Phys. Rev. Lett. 82 695Google Scholar

    [9]

    Kirischuk V, Ageev V, Dovbnya A, Kandybei S, Ranyuk Y 2015 Phys. Lett. B 750 89Google Scholar

    [10]

    Carroll J J, Karamian S A, Rivlin L A, Zadernovsky A A 2001 Hyperfine Interact. 135 3Google Scholar

    [11]

    Hayes A B, Cline D, Wu C Y, Ai H, Amro H, Beausang C, Casten R F, Gerl J, Hecht A A, Heinz A, Hua H, Hughes R, Janssens R V F, Lister C J, Macchiavelli A O, Meyer D A, Moore E F, Napiorkowski P, Pardo R C, Schlegel C, Seweryniak D, Simon M W, Srebrny J, Teng R, Vetter K, Wollersheim H J 2007 Phys. Rev. C 75 034308Google Scholar

    [12]

    Karamian S A, Carroll J J 2007 Laser Phys. 17 80Google Scholar

    [13]

    Roig O, Méot V, Rossé B, Bélier G, Daugas J M, Letourneau A, Menelle A, Morel P 2011 Phys. Rev. C 83 064617Google Scholar

    [14]

    Karamian S A, Carroll J J 2011 Phys. Rev. C 83 024604Google Scholar

    [15]

    Kishimoto S, Yoda Y, Seto M, Kobayashi Y, Kitao S, Haruki R, Kawauchi T, Fukutani K, Okano T 2000 Phys. Rev. Lett. 85 1831Google Scholar

    [16]

    Morita M 1973 Prog. Theor. Phys. 49 1574Google Scholar

    [17]

    Goldanskii V, Namiot V 1976 Phys. Lett. B 62 393Google Scholar

    [18]

    Wang Y, Ma Z, Yang Y, Fu C, He W, Ma Y 2023 Front. Phys. 11 1203401Google Scholar

    [19]

    Bilous P V, Bekker H, Berengut J C, Seiferle B, von der Wense L, Thirolf P G, Pfeifer T, López-Urrutia J R C, Pálffy A 2020 Phys. Rev. Lett. 124 192502Google Scholar

    [20]

    Krutov V, Fomenko V 1968 Ann. Phys. 476 291Google Scholar

    [21]

    Porsev S G, Flambaum V V, Peik E, Tamm C 2010 Phys. Rev. Lett. 105 182501Google Scholar

    [22]

    Polasik M, Słabkowska K, Carroll J J, Chiara C J, Syrocki L, Weffder E, Rzadkiewicz J 2017 Phys. Rev. C 95 034312Google Scholar

    [23]

    Wu Y, Gunst J, Keitel C H, Pálffy A 2018 Phys. Rev. Lett. 120 052504Google Scholar

    [24]

    Gunst J, Litvinov Y A, Keitel C H, Pálffy A 2014 Phys. Rev. Lett. 112 082501Google Scholar

    [25]

    Karamian S A, Carroll J J 2012 Phys. At. Nucl. 75 1362Google Scholar

    [26]

    Pálffy A, Evers J, Keitel C H 2007 Phys. Rev. Lett. 99 172502Google Scholar

    [27]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. A 100 063420Google Scholar

    [28]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [29]

    Gunst J, Wu Y, Kumar N, Keitel C H, Pálffy A 2015 Phys. Plasmas 22 112706Google Scholar

    [30]

    Feng J, Wang W, Fu C, Chen L, Tan J, Li Y, Wang J, Li Y, Zhang G, Ma Y, Zhang J 2022 Phys. Rev. Lett. 128 052501Google Scholar

    [31]

    Gagyi-Palffy A 2006 Ph. D. Dissertation (Hessian: Giessen University

    [32]

    Fan W, Qi W, Zhang J, Cao Z, Lan H, Li X, Xu Y, Gu Y, Deng Z, Zhang Z, Tan C, Luo W, Yuan Y, Zhou W 2023 Phys. Rev. Res. 5 043120Google Scholar

    [33]

    吴义恒, 陆景彬, 任臻 2023 原子核物理评论 40 519526Google Scholar

    Wu Y H, Lu J B, Ren Z 2023 Nucl. Phys. Rev. 40 519526Google Scholar

    [34]

    Fukuchi T, Gono Y, Odahara A, Tanaka S, Inoue M, Wakabayashi Y, Sasaki T, Kibe M, Hokoiwa N, Shinozuka T, Fujita M, Yamazaki A, Sonoda T, Lee C S, Kwon Y K, Moon J Y, Lee J H 2005 Eur. Phys. J. A 24 249Google Scholar

    [35]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B, Karamian S A 2018 Nature 554 216Google Scholar

    [36]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. Lett. 122 212501Google Scholar

    [37]

    Rzadkiewicz J, Polasik M, Słabkowska K, Syrocki L, Carroll J J, Chiara C J 2021 Phys. Rev. Lett. 127 042501Google Scholar

    [38]

    Guo S, Fang Y, Zhou X, Petrache C M 2021 Nature 594 E1Google Scholar

    [39]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B 2021 Nature 594 E3Google Scholar

    [40]

    Guo S, Ding B, Zhou X H, Wu Y B, Wang J G, Xu S W, Fang Y D, Petrache C M, Lawrie E A, Qiang Y H, Yang Y Y, Ong H J, Ma J B, Chen J L, Fang F, Yu Y H, Lv B F, Zeng F F, Zeng Q B, Huang H, Jia Z H, Jia C X, Liang W, Li Y, Huang N W, Liu L J, Zheng Y, Zhang W Q, Rohilla A, Bai Z, Jin S L, Wang K, Duan F F, Yang G, Li J H, Xu J H, Li G S, Liu M L, Liu Z, Gan Z G, Wang M, Zhang Y H 2022 Phys. Rev. Lett. 128 242502Google Scholar

    [41]

    Sun Z Y, Zhan W, Guo Z Y, Xiao G Q, Li J 2023 Nucl. Instrum. Methods Phys. Res. 503 496503Google Scholar

    [42]

    王萱轩, 宋海声, 杨过, 段芳芳, 王康, 杨彦云 2023 原子核物理评论 40 244250Google Scholar

    Wang X X, Song H S, Yang G, Duan F F, Wang K, Yang Y Y 2023 Nucl. Phys. Rev. 40 244250Google Scholar

    [43]

    Rzadkiewicz J, Słabkowska K, Polasik M, Syrocki Ł, Carroll J J, Chiara C J 2023 Phys. Rev. C 108 L031302Google Scholar

    [44]

    Tarasov O, Bazin D 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 174Google Scholar

  • 图 1  六种可能的诱发退激模式示意图

    Fig. 1.  Schematic diagram of six possible induced de-excitation modes.

    图 2  阻停过程中电子俘获致核激发的示意图

    Fig. 2.  Schematic diagram of nuclear excitation by electron capture in ion-stopping process.

    图 3  $ ^{93} {\mathrm{Mo}} $能级纲图

    Fig. 3.  Partial level scheme of $ ^{93} {\mathrm{Mo}} $.

    图 4  两次实验设置的对比 (a)美国阿贡实验室开展实验的设置示意图; (b)兰州重离子加速器装置开展实验的设置示意图

    Fig. 4.  Comparison of two experimental Settings: (a) The setting diagram of the experiment carried out at Argonne Laboratory in the United States; (b) schematic diagram of the experiment based on the Heavy Ion Research Facility in Lanzhou.

    图 5  实验设置示意图

    Fig. 5.  Experimental setup diagram.

    图 6  不同反应道下, $ ^{93} {\mathrm{Mo}} $的生成截面与其反冲能的关系

    Fig. 6.  Relation between $ ^{93} {\mathrm{Mo}} $ cross section and recoil energy of different reaction channels

    图 7  不同反应道$ ^{93} {\mathrm{Mo}} $截面与入口态自旋的关系, @后面表示的是计算使用的束流能量

    Fig. 7.  Relation between the $ ^{93} {\mathrm{Mo}} $ cross section and the spin of the entry state for different reaction channels, and the values after @ are the beam energies used in the calculations.

  • [1]

    Walker P, Podolyák Z 2020 Phys. Scr. 95 044004Google Scholar

    [2]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin. Phys. C 41 030001Google Scholar

    [3]

    Elekes Z, Timar J 2015 Nucl. Data Sheets 129 191Google Scholar

    [4]

    Hult M, Gasparro J, Marissens G, Lindahl P, Wätjen U, Johnston P N, Wagemans C, Köhler M 2006 Phys. Rev. C 74 054311Google Scholar

    [5]

    Smith M B, Walker P M, Ball G C, Carroll J J, Garrett P E, Hackman G, Propri R, Sarazin F, Scraggs H C 2003 Phys. Rev. C 68 031302Google Scholar

    [6]

    郑人洲, 陆景彬, 王宇, 李潇祎, 张雪, 陈子怡, 梁磊, 刘玉敏 2023 原子核物理评论 40 385Google Scholar

    Zheng R Z, Lu J B, Wang Y, Li X Y, Zhang X, Chen Z Y, Liang L, Liu Y M 2023 Nuclear Physics Review 40 385Google Scholar

    [7]

    Matinyan S 1998 Phys. Rep. 298 199Google Scholar

    [8]

    Collins C B, Davanloo F, Iosif M C, Dussart R, Hicks J M, Karamian S A, Ur C A, Popescu I I, Kirischuk V I, Carroll J J, Roberts H E, McDaniel P, Crist C E 1999 Phys. Rev. Lett. 82 695Google Scholar

    [9]

    Kirischuk V, Ageev V, Dovbnya A, Kandybei S, Ranyuk Y 2015 Phys. Lett. B 750 89Google Scholar

    [10]

    Carroll J J, Karamian S A, Rivlin L A, Zadernovsky A A 2001 Hyperfine Interact. 135 3Google Scholar

    [11]

    Hayes A B, Cline D, Wu C Y, Ai H, Amro H, Beausang C, Casten R F, Gerl J, Hecht A A, Heinz A, Hua H, Hughes R, Janssens R V F, Lister C J, Macchiavelli A O, Meyer D A, Moore E F, Napiorkowski P, Pardo R C, Schlegel C, Seweryniak D, Simon M W, Srebrny J, Teng R, Vetter K, Wollersheim H J 2007 Phys. Rev. C 75 034308Google Scholar

    [12]

    Karamian S A, Carroll J J 2007 Laser Phys. 17 80Google Scholar

    [13]

    Roig O, Méot V, Rossé B, Bélier G, Daugas J M, Letourneau A, Menelle A, Morel P 2011 Phys. Rev. C 83 064617Google Scholar

    [14]

    Karamian S A, Carroll J J 2011 Phys. Rev. C 83 024604Google Scholar

    [15]

    Kishimoto S, Yoda Y, Seto M, Kobayashi Y, Kitao S, Haruki R, Kawauchi T, Fukutani K, Okano T 2000 Phys. Rev. Lett. 85 1831Google Scholar

    [16]

    Morita M 1973 Prog. Theor. Phys. 49 1574Google Scholar

    [17]

    Goldanskii V, Namiot V 1976 Phys. Lett. B 62 393Google Scholar

    [18]

    Wang Y, Ma Z, Yang Y, Fu C, He W, Ma Y 2023 Front. Phys. 11 1203401Google Scholar

    [19]

    Bilous P V, Bekker H, Berengut J C, Seiferle B, von der Wense L, Thirolf P G, Pfeifer T, López-Urrutia J R C, Pálffy A 2020 Phys. Rev. Lett. 124 192502Google Scholar

    [20]

    Krutov V, Fomenko V 1968 Ann. Phys. 476 291Google Scholar

    [21]

    Porsev S G, Flambaum V V, Peik E, Tamm C 2010 Phys. Rev. Lett. 105 182501Google Scholar

    [22]

    Polasik M, Słabkowska K, Carroll J J, Chiara C J, Syrocki L, Weffder E, Rzadkiewicz J 2017 Phys. Rev. C 95 034312Google Scholar

    [23]

    Wu Y, Gunst J, Keitel C H, Pálffy A 2018 Phys. Rev. Lett. 120 052504Google Scholar

    [24]

    Gunst J, Litvinov Y A, Keitel C H, Pálffy A 2014 Phys. Rev. Lett. 112 082501Google Scholar

    [25]

    Karamian S A, Carroll J J 2012 Phys. At. Nucl. 75 1362Google Scholar

    [26]

    Pálffy A, Evers J, Keitel C H 2007 Phys. Rev. Lett. 99 172502Google Scholar

    [27]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. A 100 063420Google Scholar

    [28]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [29]

    Gunst J, Wu Y, Kumar N, Keitel C H, Pálffy A 2015 Phys. Plasmas 22 112706Google Scholar

    [30]

    Feng J, Wang W, Fu C, Chen L, Tan J, Li Y, Wang J, Li Y, Zhang G, Ma Y, Zhang J 2022 Phys. Rev. Lett. 128 052501Google Scholar

    [31]

    Gagyi-Palffy A 2006 Ph. D. Dissertation (Hessian: Giessen University

    [32]

    Fan W, Qi W, Zhang J, Cao Z, Lan H, Li X, Xu Y, Gu Y, Deng Z, Zhang Z, Tan C, Luo W, Yuan Y, Zhou W 2023 Phys. Rev. Res. 5 043120Google Scholar

    [33]

    吴义恒, 陆景彬, 任臻 2023 原子核物理评论 40 519526Google Scholar

    Wu Y H, Lu J B, Ren Z 2023 Nucl. Phys. Rev. 40 519526Google Scholar

    [34]

    Fukuchi T, Gono Y, Odahara A, Tanaka S, Inoue M, Wakabayashi Y, Sasaki T, Kibe M, Hokoiwa N, Shinozuka T, Fujita M, Yamazaki A, Sonoda T, Lee C S, Kwon Y K, Moon J Y, Lee J H 2005 Eur. Phys. J. A 24 249Google Scholar

    [35]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B, Karamian S A 2018 Nature 554 216Google Scholar

    [36]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. Lett. 122 212501Google Scholar

    [37]

    Rzadkiewicz J, Polasik M, Słabkowska K, Syrocki L, Carroll J J, Chiara C J 2021 Phys. Rev. Lett. 127 042501Google Scholar

    [38]

    Guo S, Fang Y, Zhou X, Petrache C M 2021 Nature 594 E1Google Scholar

    [39]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B 2021 Nature 594 E3Google Scholar

    [40]

    Guo S, Ding B, Zhou X H, Wu Y B, Wang J G, Xu S W, Fang Y D, Petrache C M, Lawrie E A, Qiang Y H, Yang Y Y, Ong H J, Ma J B, Chen J L, Fang F, Yu Y H, Lv B F, Zeng F F, Zeng Q B, Huang H, Jia Z H, Jia C X, Liang W, Li Y, Huang N W, Liu L J, Zheng Y, Zhang W Q, Rohilla A, Bai Z, Jin S L, Wang K, Duan F F, Yang G, Li J H, Xu J H, Li G S, Liu M L, Liu Z, Gan Z G, Wang M, Zhang Y H 2022 Phys. Rev. Lett. 128 242502Google Scholar

    [41]

    Sun Z Y, Zhan W, Guo Z Y, Xiao G Q, Li J 2023 Nucl. Instrum. Methods Phys. Res. 503 496503Google Scholar

    [42]

    王萱轩, 宋海声, 杨过, 段芳芳, 王康, 杨彦云 2023 原子核物理评论 40 244250Google Scholar

    Wang X X, Song H S, Yang G, Duan F F, Wang K, Yang Y Y 2023 Nucl. Phys. Rev. 40 244250Google Scholar

    [43]

    Rzadkiewicz J, Słabkowska K, Polasik M, Syrocki Ł, Carroll J J, Chiara C J 2023 Phys. Rev. C 108 L031302Google Scholar

    [44]

    Tarasov O, Bazin D 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 174Google Scholar

  • [1] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [2] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [3] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展. 物理学报, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [4] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [5] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [6] 梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙. Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究. 物理学报, 2016, 65(14): 143401. doi: 10.7498/aps.65.143401
    [7] 梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红. Xe54+离子与Xe原子碰撞过程中的辐射电子俘获及退激发辐射的理论研究. 物理学报, 2015, 64(15): 153401. doi: 10.7498/aps.64.153401
    [8] 羊奕伟, 刘荣, 严小松. 钍俘获反应率离线伽马测量方法. 物理学报, 2013, 62(3): 032801. doi: 10.7498/aps.62.032801
    [9] 李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰. 强流脉冲电子束诱发纯钛表面的微观结构及应力状态. 物理学报, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [10] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [11] 邹慧, 荆洪阳, 王志平, 关庆丰. 强流脉冲电子束辐照诱发金属纯镍中的空位簇缺陷. 物理学报, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [12] 关庆丰, 程笃庆, 邱冬华, 朱健, 王雪涛, 程秀围. 强流脉冲电子束辐照诱发多晶纯铝中的空位缺陷簇结构. 物理学报, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [13] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制. 物理学报, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [14] 夏良斌, 欧阳晓平, 王群书, 康克军, 何小玲, 顾牡. 掺杂有机染料的铅锡氟磷酸闪烁玻璃及其在伽马激发下的发光. 物理学报, 2009, 58(2): 882-886. doi: 10.7498/aps.58.882
    [15] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [16] 石筑一, 倪绍勇, 童 红, 赵行知. 124Te核1+态和高自旋态能谱特征的微观研究. 物理学报, 2004, 53(3): 734-737. doi: 10.7498/aps.53.734
    [17] 张宗烨, 厉光烈. 超核激发态的对称性分类. 物理学报, 1977, 26(6): 467-476. doi: 10.7498/aps.26.467
    [18] 张宗烨, 厉光烈. 超核激发态的对称性分类. 物理学报, 1976, 25(2): 172-174. doi: 10.7498/aps.25.172
    [19] 张历宁, 戴元本. 原子核中μ介子的辐射俘获. 物理学报, 1961, 17(1): 41-44. doi: 10.7498/aps.17.41
    [20] 何国柱. 电子和X射线激发原子核. 物理学报, 1958, 14(4): 289-299. doi: 10.7498/aps.14.289
计量
  • 文章访问数:  1421
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 修回日期:  2024-05-03
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-05

/

返回文章
返回