搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由电子激光制备高强度亚稳态氦原子和类氦离子

杜小娇 魏龙 孙羽 胡水明

引用本文:
Citation:

自由电子激光制备高强度亚稳态氦原子和类氦离子

杜小娇, 魏龙, 孙羽, 胡水明

Free electron laser prepared high-intensity metastable helium and helium-like ions

Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming
PDF
HTML
导出引用
  • 在少电子原子精密光谱测量中, 产生高强度、单一量子态的氦原子和类氦离子是实验研究的关键, 也是改善实验测量信噪比的决定性因素. 本文提出利用自由电子激光获得高强度亚稳态氦原子和类氦离子的实验方案. 激光的制备效率可以通过求解光和原子相互作用的主方程获得, 根据拟建设的深圳自由电子激光装置的设计参数和实验条件, 计算得到亚稳态He, Li+和Be2+的制备效率分别可达3%, 6%和2%以上. 与常见的气体放电和电子轰击等制备方法相比, 激光激发产生亚稳态原子/离子不仅可以提高制备产率, 也可以降低放电时产生的电子、离子以及光子等高能杂散粒子的影响. 利用自由电子激光激发制备亚稳态氦原子和类氦离子有望应用于多个研究领域.
    In the precision spectroscopy of few-electron atoms, the generation of high-intensity metastable helium atoms and helium-like ions is crucial for implementing experimental studies as well as a critical factor for improving the signal-to-noise ratio of experimental measurements. With the rapid development of free-electron laser (FEL) and technology, FEL wavelengths extend from hard X-rays to soft X-rays and even vacuum ultraviolet bands. Meanwhile, laser pulses with ultra-fast, ultra-intense and high repetition frequencies are realized, thus making it possible for FEL to prepare single-quantum state atoms/ions with high efficiency. In this work, we propose an experimental method for obtaining high-intensity single-quantum state helium atoms and helium-like ions by using FEL. The preparation efficiency can be calculated by solving the master equation of light-atom interaction. Considering the experimental parameters involved in this work, we predict that the efficiencies of preparing metastable 23S He, Li+ and Be2+ are about 3%, 6% and 2%, respectively. Compared with the common preparation methods such as gas discharge and electron bombardment, a state-of-the-art laser excitation method can not only increase the preparation efficiency, but also reduce the effects of high-energy stray particles such as electrons, ions, and photons generated during discharge. Furthermore, combined with the laser preparation technique, the sophisticated ion confinement technique, which can ensure a long interaction time between the ions and laser, increases the efficiency of metastable Li+ and Be2+ by several orders of magnitude. Therefore, the preparation of high-intensity metastable helium and helium-like ions can improve the measurement accuracy of precision spectroscopy of atoms and ions. A new experimental method, based on FEL, to study the fine structure energy levels 23P of helium, has the potential to obtain the results with an accuracy exceeding the sub-kHz level. Thus, the high-precision fine structure constants can be determined with the development of high-order quantum electrodynamics theory. In order to measure energy levels with higher accuracy, a new detection technique, which can reduce or even avoid more systematic effects, must be developed. For example, the quantum interference effect, which has been proposed in recent years, seriously affects the accuracy of fine-structure energy levels. If the interference phenomenon of spontaneous radiation between different excited states can be avoided in the detection process, the measurement accuracy will not be affected by this quantum interference effect. High-intensity metastable atoms or ions in chemical reaction dynamics studies also have better chances to investigate reaction mechanisms. In summary, the FEL preparation of high-intensity metastable helium atoms and helium-like ions proposed in this work will lay an important foundation for developing cold atom physics and chemical reaction dynamics.
      通信作者: 孙羽, sunyu@mail.iasf.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12304291, 22241301, 91736101, 12393822)和国家科技部博士后基金(批准号: 2022M723062)资助的课题.
      Corresponding author: Sun Yu, sunyu@mail.iasf.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304291, 22241301, 91736101, 12393822) and the Science Foundation for Postdoctoral Research of the Ministry of Science and Technology of China (Grant No. 2022M723062).
    [1]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001Google Scholar

    [2]

    Wen J L, Tang J D, Dong J F, Du X J, Hu S M, Sun Y R 2023 Phys. Rev. A 107 042811Google Scholar

    [3]

    Henson B, Ross J, Thomas K, et al. 2022 Science 376 199Google Scholar

    [4]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 J. Phys. Chem. Ref. Data 50 033105Google Scholar

    [5]

    Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar

    [6]

    Chen J J, Sun Y, Wen J L, Hu S M 2020 Phys. Rev. A 101 053824Google Scholar

    [7]

    Kato K, Skinner T, Hessels E 2018 Phys. Rev. Lett. 121 143002Google Scholar

    [8]

    郑昕, 孙羽, 陈娇娇, 胡水明 2018 物理学报 67 164203Google Scholar

    Zheng X, Sun Y R, Chen J J, Hu S M 2018 Acta Phys. Sin. 67 164203Google Scholar

    [9]

    Zheng X, Sun Y, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [10]

    Feng G P, Zheng X, Sun Y R, Hu S M 2015 Phys. Rev. A 91 030502Google Scholar

    [11]

    Zheng X, Sun Y, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [12]

    Vutha A C, Hessels E A 2015 Phys. Rev. A 92 052504Google Scholar

    [13]

    Pastor P C, Consolino L, Giusfredi G, De Natale P, Inguscio M, Yerokhin V, Pachucki K 2012 Phys. Rev. Lett. 108 143001Google Scholar

    [14]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001Google Scholar

    [15]

    Borbely J, George M, Lombardi L, Weel M, Fitzakerley D, Hessels E 2009 Phys. Rev. A 79 060503Google Scholar

    [16]

    Giusfredi G, Pastor P C, Natale P D, Mazzotti D, Mauro C d, Fallani L, Hagel G, Krachmalnicoff V, Inguscio M 2005 Can. J. Phys. 83 301Google Scholar

    [17]

    Zelevinsky T, Farkas D, Gabrielse G 2005 Phys. Rev. Lett. 95 203001Google Scholar

    [18]

    George M, Lombardi L, Hessels E 2001 Phys. Rev. Lett. 87 173002Google Scholar

    [19]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [20]

    Scholl T J, Cameron R, Rosner S D, Zhang L, Holt R A, Sansonetti C J, Gillaspy J D 1993 Phys. Rev. Lett. 71 2188Google Scholar

    [21]

    Schwartz C 1964 Phys. Rev. 134 A1181Google Scholar

    [22]

    Paliwal P, Deb N, Reich D M, van der Avoird A, Koch C P, Narevicius E 2021 Nat. Chem. 13 94Google Scholar

    [23]

    Klein A, Shagam Y, Skomorowski W, Zuchowski P S, Pawlak M, Janssen L M, Moiseyev N, Meerakker S Y V D, Avoird A V D, Koch C P, Narevicius E 2017 Nat. Phys. 13 35Google Scholar

    [24]

    Henson A B, Gersten S, Shagam Y, Narevicius J, Narevicius E 2012 Science 338 234Google Scholar

    [25]

    Martin D W, Weiser C, Sperlein R F, Bernfeld D L, Siska P E 1989 J. Chem. Phys 90 1564Google Scholar

    [26]

    Pachucki K, Yerokhin V A 2023 Phys. Rev. Lett. 130 053002Google Scholar

    [27]

    Yerokhin V A, Patkóš V, Pachucki K 2023 Phys. Rev. A 107 012810Google Scholar

    [28]

    Patkóš V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 042809Google Scholar

    [29]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [30]

    Pachucki K, Patkóš V C V, Yerokhin V A 2023 Phys. Rev. A 108 052802Google Scholar

    [31]

    Yerokhin V A, Patkóš V, Pachucki K 2022 Phys. Rev. A 106 022815Google Scholar

    [32]

    Pachucki K 2022 Phys. Rev. A 106 022802Google Scholar

    [33]

    Qi X Q, Zhang P P, Yan Z C, Shi T Y, Drake G W F, Chen A X, Zhong Z X 2023 Phys. Rev. A 107 L010802Google Scholar

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [35]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [36]

    Tang K T, Toennies J P 1984 J. Chem. Phys. 80 3726Google Scholar

    [37]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106Google Scholar

    [38]

    Kponou A, Hughes V W, Johnson C E, Lewis S A, Pichanick F M J 1981 Phys. Rev. A 24 264Google Scholar

    [39]

    Scholl T J, Holt R A, Rosner S D 1989 Phys. Rev. A 39 1163Google Scholar

    [40]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112Google Scholar

    [41]

    Bergeson S D, Balakrishnan A, Baldwin K, Lucatorto T B, Marangos J, McIlrath T, O’Brian T R, Rolston S, Sansonetti C J, Wen J 1998 Phys. Rev. Lett. 80 3475Google Scholar

    [42]

    Wang J S, Ritterbusch F, Dong X Z, Gao C, Li H, Jiang W, Liu S Y, Lu Z T, Wang W H, Yang G M, Zhang Y S, Zhang Z Y 2021 Phys. Rev. Lett. 127 023201Google Scholar

    [43]

    Steck D A 2017 Quantum and Atom Optics (Eugene: University of Oregon

    [44]

    Baig M 2022 Atoms 10 39Google Scholar

    [45]

    Chen S L, Zhou P P, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H, Gao K L 2020 Chin. Phys. Lett. 37 073201Google Scholar

  • 图 1  (a)制备亚稳态氦原子的相关能级; (b)制备亚稳态氦原子/类氦离子的装置示意图

    Fig. 1.  (a) Energy levels for the preparation of metastable helium; (b) schematic of designed apparatus for the preparation of metastable helium/helium-like ions.

    图 2  单脉冲作用时单个氦原子不同能级布居数的时间演化结果

    Fig. 2.  Time evolution for different energy levels of helium by single-pulse excitation.

    图 3  激光制备亚稳态氦原子的效率随光斑大小的模拟结果

    Fig. 3.  Simulation results of preparation efficiency of metastable helium with respect to spot size.

    图 4  激发效率随同步辐射光通量的变化

    Fig. 4.  Excitation efficiency as a function of the photon flux for synchrotron radiation sources.

    图 5  制备亚稳态$ {\rm{Li^{+}}} $和$ {\rm{Be^{2+}}} $的相关能级示意图

    Fig. 5.  Energy levels of metastable $ {\rm{Li^{+}}} $ and $ {\rm{Be^{2+}}} $.

  • [1]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001Google Scholar

    [2]

    Wen J L, Tang J D, Dong J F, Du X J, Hu S M, Sun Y R 2023 Phys. Rev. A 107 042811Google Scholar

    [3]

    Henson B, Ross J, Thomas K, et al. 2022 Science 376 199Google Scholar

    [4]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 J. Phys. Chem. Ref. Data 50 033105Google Scholar

    [5]

    Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar

    [6]

    Chen J J, Sun Y, Wen J L, Hu S M 2020 Phys. Rev. A 101 053824Google Scholar

    [7]

    Kato K, Skinner T, Hessels E 2018 Phys. Rev. Lett. 121 143002Google Scholar

    [8]

    郑昕, 孙羽, 陈娇娇, 胡水明 2018 物理学报 67 164203Google Scholar

    Zheng X, Sun Y R, Chen J J, Hu S M 2018 Acta Phys. Sin. 67 164203Google Scholar

    [9]

    Zheng X, Sun Y, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [10]

    Feng G P, Zheng X, Sun Y R, Hu S M 2015 Phys. Rev. A 91 030502Google Scholar

    [11]

    Zheng X, Sun Y, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [12]

    Vutha A C, Hessels E A 2015 Phys. Rev. A 92 052504Google Scholar

    [13]

    Pastor P C, Consolino L, Giusfredi G, De Natale P, Inguscio M, Yerokhin V, Pachucki K 2012 Phys. Rev. Lett. 108 143001Google Scholar

    [14]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001Google Scholar

    [15]

    Borbely J, George M, Lombardi L, Weel M, Fitzakerley D, Hessels E 2009 Phys. Rev. A 79 060503Google Scholar

    [16]

    Giusfredi G, Pastor P C, Natale P D, Mazzotti D, Mauro C d, Fallani L, Hagel G, Krachmalnicoff V, Inguscio M 2005 Can. J. Phys. 83 301Google Scholar

    [17]

    Zelevinsky T, Farkas D, Gabrielse G 2005 Phys. Rev. Lett. 95 203001Google Scholar

    [18]

    George M, Lombardi L, Hessels E 2001 Phys. Rev. Lett. 87 173002Google Scholar

    [19]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [20]

    Scholl T J, Cameron R, Rosner S D, Zhang L, Holt R A, Sansonetti C J, Gillaspy J D 1993 Phys. Rev. Lett. 71 2188Google Scholar

    [21]

    Schwartz C 1964 Phys. Rev. 134 A1181Google Scholar

    [22]

    Paliwal P, Deb N, Reich D M, van der Avoird A, Koch C P, Narevicius E 2021 Nat. Chem. 13 94Google Scholar

    [23]

    Klein A, Shagam Y, Skomorowski W, Zuchowski P S, Pawlak M, Janssen L M, Moiseyev N, Meerakker S Y V D, Avoird A V D, Koch C P, Narevicius E 2017 Nat. Phys. 13 35Google Scholar

    [24]

    Henson A B, Gersten S, Shagam Y, Narevicius J, Narevicius E 2012 Science 338 234Google Scholar

    [25]

    Martin D W, Weiser C, Sperlein R F, Bernfeld D L, Siska P E 1989 J. Chem. Phys 90 1564Google Scholar

    [26]

    Pachucki K, Yerokhin V A 2023 Phys. Rev. Lett. 130 053002Google Scholar

    [27]

    Yerokhin V A, Patkóš V, Pachucki K 2023 Phys. Rev. A 107 012810Google Scholar

    [28]

    Patkóš V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 042809Google Scholar

    [29]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [30]

    Pachucki K, Patkóš V C V, Yerokhin V A 2023 Phys. Rev. A 108 052802Google Scholar

    [31]

    Yerokhin V A, Patkóš V, Pachucki K 2022 Phys. Rev. A 106 022815Google Scholar

    [32]

    Pachucki K 2022 Phys. Rev. A 106 022802Google Scholar

    [33]

    Qi X Q, Zhang P P, Yan Z C, Shi T Y, Drake G W F, Chen A X, Zhong Z X 2023 Phys. Rev. A 107 L010802Google Scholar

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [35]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [36]

    Tang K T, Toennies J P 1984 J. Chem. Phys. 80 3726Google Scholar

    [37]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106Google Scholar

    [38]

    Kponou A, Hughes V W, Johnson C E, Lewis S A, Pichanick F M J 1981 Phys. Rev. A 24 264Google Scholar

    [39]

    Scholl T J, Holt R A, Rosner S D 1989 Phys. Rev. A 39 1163Google Scholar

    [40]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112Google Scholar

    [41]

    Bergeson S D, Balakrishnan A, Baldwin K, Lucatorto T B, Marangos J, McIlrath T, O’Brian T R, Rolston S, Sansonetti C J, Wen J 1998 Phys. Rev. Lett. 80 3475Google Scholar

    [42]

    Wang J S, Ritterbusch F, Dong X Z, Gao C, Li H, Jiang W, Liu S Y, Lu Z T, Wang W H, Yang G M, Zhang Y S, Zhang Z Y 2021 Phys. Rev. Lett. 127 023201Google Scholar

    [43]

    Steck D A 2017 Quantum and Atom Optics (Eugene: University of Oregon

    [44]

    Baig M 2022 Atoms 10 39Google Scholar

    [45]

    Chen S L, Zhou P P, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H, Gao K L 2020 Chin. Phys. Lett. 37 073201Google Scholar

  • [1] 张乾煜, 白文丽, 敖致远, 丁彦皓, 彭文翠, 何胜国, 童昕. 基于冷分子离子HD+振转光谱的精密测量. 物理学报, 2024, 73(20): 203301. doi: 10.7498/aps.73.20241064
    [2] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量. 物理学报, 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [3] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究. 物理学报, 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [4] 仲银鹏, 杨霞. 基于自由电子激光的散射技术及谱学方法进展. 物理学报, 2024, 73(19): 194101. doi: 10.7498/aps.73.20240930
    [5] 管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林. 锂离子精密光谱与核结构信息. 物理学报, 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验. 物理学报, 2018, 67(8): 084102. doi: 10.7498/aps.67.20172413
    [9] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响. 物理学报, 2018, 67(7): 073202. doi: 10.7498/aps.67.20172440
    [10] 宋文娟, 郭福明, 陈基根, 杨玉军. 双色高频激光作用下原子低阶次谐波的理论研究. 物理学报, 2018, 67(3): 033201. doi: 10.7498/aps.67.20172129
    [11] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究. 物理学报, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [12] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [13] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [14] 杨宁选, 蒋 军, 颉录有, 董晨钟. Breit相互作用对类氦离子亚稳态1s2s 3S1电子碰撞激发截面的影响. 物理学报, 2008, 57(5): 2888-2894. doi: 10.7498/aps.57.2888
    [15] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [16] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [17] 胡素兴, 傅恩生, 徐至展. 用反向渐变波导提高远红外自由电子激光器效率. 物理学报, 1996, 45(8): 1326-1330. doi: 10.7498/aps.45.1326
    [18] 朱莳通, 沈文达, 郭奇志. 强激光等离子体中的自由电子波函数. 物理学报, 1993, 42(9): 1471-1478. doi: 10.7498/aps.42.1471
    [19] 张世昌. 等离子体波在喇曼自由电子激光中的作用. 物理学报, 1991, 40(2): 219-225. doi: 10.7498/aps.40.219
    [20] 张中, 张世昌. 空间电荷场对自由电子激光中电子稳态轨道的影响. 物理学报, 1989, 38(2): 285-289. doi: 10.7498/aps.38.285
计量
  • 文章访问数:  2022
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 修回日期:  2024-06-03
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回