搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硒化温度对MoSe2薄膜结构和光学带隙的影响

吴诗漫 陶思敏 吉爱闯 管绍杭 肖剑荣

引用本文:
Citation:

硒化温度对MoSe2薄膜结构和光学带隙的影响

吴诗漫, 陶思敏, 吉爱闯, 管绍杭, 肖剑荣
cstr: 32037.14.aps.73.20240611

Influence of selenization temperature on structure and optical band gap of MoSe2 thin film

Wu Shi-Man, Tao Si-Min, Ji Ai-Chuang, Guan Shao-Hang, Xiao Jian-Rong
cstr: 32037.14.aps.73.20240611
PDF
HTML
导出引用
  • 使用射频磁控溅射技术制备了钼(Mo)膜, 再利用硒化退火方式生成二硒化钼(MoSe2)薄膜. 对MoSe2薄膜的表面形貌、晶体结构和光学带隙进行了表征和分析. 结果显示, MoSe2薄膜的晶体结构与硒化温度(Ts)密切相关, 随着硒化温度的升高, 薄膜的平均晶粒尺寸先略减小后增大, 且(002)晶面取向优先生长. MoSe2薄膜对短波长光(600 nm左右)具有较低的吸收率. 随着硒化温度升高, MoSe2的直接带隙波发生蓝移, 光学带隙随之减小. 研究表明, 通过改变硒化温度可以有效调控MoSe2结构和光学带隙, 为MoSe2薄膜在光学器件应用方面提供更多可能.
    In recent years, MoSe2, as a kind of transition metal dichalcogenide, has aroused widespread research interest due to its special crystal structure with different electrical and optical properties. The band gap of molybdenum diselenide can be manipulated by different layers, strain engineering, doping, or the formation of heterostructures, which makes it potential advantages in optoelectronic devices and photovoltaic applications. In this work, we investigate the influence of selenization temperature on the structures and optical properties of the MoSe2 films. Molybdenum (Mo) thin films are prepared by RF magnetron sputtering, and then MoSe2 thin films are generated by selenization annealing. The surface morphology, crystal structure, and optical bandgap for each of the MoSe2 thin films are characterized and analyzed by using scanning electron microscopy, X-ray diffraction, and ultraviolet visible spectroscopy, respectively. The results show that the crystal structures of the MoSe2 thin films are closely related to the selenization temperature (Ts): with the increase of selenization temperature, the average grain size in the thin film decreases slightly and then increases rapidly from 24.82 nm to 55.76 nm. Meanwhile, the (002) crystal plane of MoSe2 also exhibits preferential growth with temperature increasing. Each MoSe2 thin film has a low absorption rate for short-wavelength light (around 600 nm). With the increase of selenization temperature, the bandgap waves of the MoSe2 thin films are blue-shifted, and the optical bandgaps decrease, which is attributed to the fact that different selenization temperatures cause the lattice size of MoSe2 to change, thereby affecting the spatial expansion of its electronic wave function. In addition, the structure and optical bandgap of MoSe2 can be effectively controlled by changing the selenization temperature, which provides more possibilities for the applications of the MoSe2 thin films in optical devices.
      通信作者: 肖剑荣, xjr@glut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12064006)资助的课题.
      Corresponding author: Xiao Jian-Rong, xjr@glut.edu.cn
    [1]

    Monga D, Sharma S, Shetti N P, Basu S, Reddy K R, Aminabhavi T M 2001 Mater. Today Chem. 19 100399Google Scholar

    [2]

    Zhou W, Gong H M, Jin X H, Chen Y, Li H M, Liu S 2022 Front. Physics 10 842789Google Scholar

    [3]

    Kaur R, Singh K, Tripathi S 2022 J. Alloy. Compd. 905 164103Google Scholar

    [4]

    Cui Z, Wang H X, Shen Y, Qin K, Yuan P, Li E L 2024 Mater. Today Phys. 40 101317Google Scholar

    [5]

    Li F, Xu B, Yang W, Qi Z Y, Ma C, Wang Y J, Zhang X H, Luo Z R, Liang D L, Li D 2020 Nano Res. 13 1053Google Scholar

    [6]

    Yan Q J, Cheng J X, Wang W K, Sun M J, Yin Y L, Peng Y H, Zhou W C, Tang D S 2022 J. Phys. Condes. Matter 34 475703Google Scholar

    [7]

    Zhao P, Cheng R, Zhao L, Yang H J, Jiang Z Y 2023 J. Appl. Phys. 134 134302Google Scholar

    [8]

    Kalkan S B, Najafidehaghani E, Gan Z, Apfelbeck F A C, Hübner U, George A, Turchanin A, Nickel B 2021 npj 2D Mater. Appl. 5 92Google Scholar

    [9]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [10]

    郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 017104Google Scholar

    Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 017104Google Scholar

    [11]

    Zhang Q Y, Mei L, Cao X H, Tang Y X, Zeng Z Y 2020 J. Mater. Chem. A 8 15417Google Scholar

    [12]

    Li Y G, Kuang G Z, Jiao Z J, Yao L, Duan R H 2022 Mater. Res. Express 9 122001Google Scholar

    [13]

    Wei Y X, Hu C G, Li Y N, Hu X T, Yu K H, Sun L T, Hohage M, Sun L D 2020 Nanotechnology 31 315710Google Scholar

    [14]

    Chen L, Wang J F, Li X J, Zhao C R, Hu X, Wu Y, He Y M 2022 Inorg. Chem. Front. 9 2714Google Scholar

    [15]

    Vanathi V, Sathishkumar M, Kannan S, Balamurugan A 2024 Mater. Lett. 356 135595Google Scholar

    [16]

    Li J C, Yan W J, Lü Y H, Leng J, Zhang D, Coileáin C Ó, Cullen C P, Stimpel-Lindner T, Duesberg G S, Cho J 2020 RSC Adv. 10 1580Google Scholar

    [17]

    Zhan W Y, Zou J P, Xu M, Lei T, Wei H M 2023 Trans. Nonferrous Met. Soc. China 33 2483Google Scholar

    [18]

    Zhu X B, Jiang X, Yao X Y, Leng Y X, Xu X X, Peng A P, Wang L P, Xue Q J 2019 ACS Appl. Mater. Interfaces 11 45726Google Scholar

    [19]

    Yaqub T B, Vuchkov T, Sanguino P, Polcar T, Cavaleiro A 2020 Coatings 10 133Google Scholar

    [20]

    Yaqub T B, Kannur K H, Vuchkov T, Pupier C, Héau C, Cavaleiro A 2020 Mater. Lett. 275 128035Google Scholar

    [21]

    Li N, Liu Z T, Feng L P, Jia R T 2016 Surf. Eng. 32 299Google Scholar

    [22]

    Mao X, Li Z Q, Zou J P, Zhao G Y, Li D N, Song Z Q 2019 Appl. Surf. Sci. 487 719Google Scholar

    [23]

    Wu Q L, Fu X S, Yang K, Wu H Y, Liu L, Zhang L, Tian Y, Yin L J, Huang W Q, Zhang W, Wong P K J, Zhang L J, Wee A T S, Qin Z H 2021 ACS Nano 15 4481Google Scholar

    [24]

    Franklin A D 2015 Science 349 704Google Scholar

    [25]

    Chang Y S, Chen C Y, Ho C J, Cheng C M, Chen H R, Fu T Y, Huang Y T, Ke S W, Du H Y, Lee K Y 2021 Nano Energy 84 105922Google Scholar

    [26]

    Thureja D, Imamoglu A, Smoleński T, Amelio I, Popert A, Chervy T, Lu X, Liu S, Barmak K, Watanabe K 2022 Nature 606 298Google Scholar

    [27]

    Chouki T, Donkova B, Aktarla B, Stefanov P, Emin S 2021 Mater. Today Commun. 26 101976Google Scholar

    [28]

    Upadhyay S, Pandey O 2021 J. Alloy. Compd. 857 157522Google Scholar

    [29]

    Jäger-Waldau A, Lux-Steiner M, Jäger-Waldau R, Burkhardt R, Bucher E 1990 Thin Solid Films 189 339Google Scholar

    [30]

    李健, 朱洁 2007 物理学报 56 574Google Scholar

    Li J, Zhu J 2007 Acta Phys. Sin. 56 574Google Scholar

    [31]

    毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 物理学报 63 118802Google Scholar

    Mao Q N, Zhang X Y, Li X G, He J X, Yu P R, Wang D 2014 Acta Phys. Sin. 63 118802Google Scholar

    [32]

    Sharma C, Srivastava A K, Gupta M K 2023 Physica B 669 415290Google Scholar

    [33]

    Zeng F, Kong W Y, Liang Y H, Li F, Lvtao Y Z, Su Z H, Wang T, Peng B G, Ye L F, Chen Z H, Gao X Y, Huang J, Zheng R K, Yang X D 2023 Adv. Mater. 35 2306051Google Scholar

    [34]

    Mittal H, Raza M, Khanuja M 2023 MethodsX 11 102409Google Scholar

    [35]

    Kandar S, Bhatt K, Kumar N, Kapoor A K, Singh R 2024 ACS Appl. Nano Mater. 7 8212Google Scholar

    [36]

    Tao S M, Ma J F, Liu J J, Wang Y R, Xiao J R 2024 Int. J. Hydrog. Energy 58 829Google Scholar

    [37]

    Ohtake A, Sakuma Y 2021 J. Phys. Chem. C 125 11257Google Scholar

    [38]

    Shi N X, Liu G Z, Xi B J, An X G, Sun C H, Xiong S L 2024 Nano Res. 17 4023Google Scholar

    [39]

    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E 2014 ACS Nano 8 5125Google Scholar

    [40]

    Zhao S D, Lu M L, Xue S S, Yan L, Miao P, Hang Y, Wang X J, Liu Z G, Wang Y, Tao L, Sui Y, Wang Y 2019 arXiv: 1904.09789 [cond-mat.mtrl-sci]

    [41]

    Ahmad Y H, Kamand F Z, Zekri A, Chae K J, Aïssa B, Al-Qaradawi S Y 2023 Appl. Surf. Sci. 626 157205Google Scholar

    [42]

    Liu H L, Yang T, Chen J H, Chen H W, Guo H H, Saito R, Li M Y, Li L J 2020 Sci Rep 10 15282Google Scholar

    [43]

    Wang Z, Chen Y F, Wu P S, Ye J F, Peng M, Yan Y, Zhong F, He T, Wang Y, Xu M J 2020 Infrared Phys. Technol. 106 103272Google Scholar

    [44]

    黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 物理学报 66 137801Google Scholar

    Huang J W, Luo L Q, Jin B, Chu S J, Peng R F 2017 Acta Phys. Sin. 66 137801Google Scholar

    [45]

    Zhang X L, Zhou J, Li S Q, Wang Y Y, Zhang S P, Liu Y L, Gao J F, Zhao J J, Wang W P, Yu R C 2021 J. Phys. Chem. Lett. 12 5879Google Scholar

  • 图 1  (a) MoSe2薄膜的XRD图谱; (b) MoSe2薄膜主要的衍射峰为(002), (100), (110)时不同硒化温度下的织构系数; (c) MoSe2薄膜平均晶粒尺寸随硒化温度的变化曲线和微应变值

    Fig. 1.  (a) XRD pattern of MoSe2 thin film; (b) texture coefficient at different selenization temperatures when the main diffraction peaks of MoSe2 thin film are (002), (100), and (110); (c) variation curve and microstrain value of the average grain size of MoSe2 thin film with selenization temperature.

    图 2  当硒化温度不同时, MoSe2薄膜的SEM图像(a)—(d)及典型横截面图像(e)—(h) (a), (e) 750 ℃; (b), (f) 800 ℃; (c), (g) 850 ℃; (d), (h) 900 ℃. (i)不同温度的MoSe2薄膜的Se, Mo元素原子占比图

    Fig. 2.  SEM images (a)–(d) and typical cross-sectional images (e)–(h) of MoSe2 thin films at different selenization temperatures: (a), (e) 750 ℃; (b), (f) 800 ℃; (c), (g) 850 ℃; (d), (h) 900 ℃. (i) Atomic proportion of Se and Mo elements in MoSe2 thin films at different temperatures.

    图 3  MoSe2薄膜的50 nm (a)和5 nm (b)分辨透射电子显微镜图片; MoSe2薄膜(002) (c)和(100) (d)面的选取电子衍射图样; (e)衍射环

    Fig. 3.  50 nm (a) and 5 nm (b) resolution TEM images of MoSe2 thin films; select electron diffraction patterns for the (002) (c) and (100) (d) planes of MoSe2 thin film; (e) diffraction ring.

    图 4  MoSe2薄膜在900 ℃的XPS图谱 (a)总谱; (b) Se 3d; (c) Mo 3d

    Fig. 4.  XPS spectrum of MoSe2 thin film at 900 ℃: (a) Overall spectrum; (b) Se 3d; (c) Mo 3d.

    图 5  (a) MoSe2薄膜的吸收光谱, 插图不同温度下MoSe2薄膜的平均吸收率; (b) MoSe2薄膜的Tauc关系图; (c)不同硒化温度MoSe2薄膜的发致发光光谱

    Fig. 5.  (a) Absorption spectrum of MoSe2 thin film, insert is the average absorption rate of MoSe2 thin film at different temperatures; (b) Tauc diagram of MoSe2 thin film; (c) photoluminescence spectra of MoSe2 thin films at different selenization temperatures.

    表 1  750—900 ℃ MoSe2薄膜的各元素原子、质量占比

    Table 1.  Atomic and mass ratios of various elements in MoSe2 thin films at 750–900 ℃.

    Temperature/℃ElementAtomic/%Weight/%
    750Se44.4652.70
    Mo28.3040.76
    O27.246.54
    800Se55.3447.25
    Mo38.5827.11
    O6.0925.65
    850Se59.1654.97
    Mo37.2326.47
    O3.6116.56
    900Se58.0653.12
    Mo37.8828.53
    O4.0618.35
    下载: 导出CSV
  • [1]

    Monga D, Sharma S, Shetti N P, Basu S, Reddy K R, Aminabhavi T M 2001 Mater. Today Chem. 19 100399Google Scholar

    [2]

    Zhou W, Gong H M, Jin X H, Chen Y, Li H M, Liu S 2022 Front. Physics 10 842789Google Scholar

    [3]

    Kaur R, Singh K, Tripathi S 2022 J. Alloy. Compd. 905 164103Google Scholar

    [4]

    Cui Z, Wang H X, Shen Y, Qin K, Yuan P, Li E L 2024 Mater. Today Phys. 40 101317Google Scholar

    [5]

    Li F, Xu B, Yang W, Qi Z Y, Ma C, Wang Y J, Zhang X H, Luo Z R, Liang D L, Li D 2020 Nano Res. 13 1053Google Scholar

    [6]

    Yan Q J, Cheng J X, Wang W K, Sun M J, Yin Y L, Peng Y H, Zhou W C, Tang D S 2022 J. Phys. Condes. Matter 34 475703Google Scholar

    [7]

    Zhao P, Cheng R, Zhao L, Yang H J, Jiang Z Y 2023 J. Appl. Phys. 134 134302Google Scholar

    [8]

    Kalkan S B, Najafidehaghani E, Gan Z, Apfelbeck F A C, Hübner U, George A, Turchanin A, Nickel B 2021 npj 2D Mater. Appl. 5 92Google Scholar

    [9]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [10]

    郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 017104Google Scholar

    Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 017104Google Scholar

    [11]

    Zhang Q Y, Mei L, Cao X H, Tang Y X, Zeng Z Y 2020 J. Mater. Chem. A 8 15417Google Scholar

    [12]

    Li Y G, Kuang G Z, Jiao Z J, Yao L, Duan R H 2022 Mater. Res. Express 9 122001Google Scholar

    [13]

    Wei Y X, Hu C G, Li Y N, Hu X T, Yu K H, Sun L T, Hohage M, Sun L D 2020 Nanotechnology 31 315710Google Scholar

    [14]

    Chen L, Wang J F, Li X J, Zhao C R, Hu X, Wu Y, He Y M 2022 Inorg. Chem. Front. 9 2714Google Scholar

    [15]

    Vanathi V, Sathishkumar M, Kannan S, Balamurugan A 2024 Mater. Lett. 356 135595Google Scholar

    [16]

    Li J C, Yan W J, Lü Y H, Leng J, Zhang D, Coileáin C Ó, Cullen C P, Stimpel-Lindner T, Duesberg G S, Cho J 2020 RSC Adv. 10 1580Google Scholar

    [17]

    Zhan W Y, Zou J P, Xu M, Lei T, Wei H M 2023 Trans. Nonferrous Met. Soc. China 33 2483Google Scholar

    [18]

    Zhu X B, Jiang X, Yao X Y, Leng Y X, Xu X X, Peng A P, Wang L P, Xue Q J 2019 ACS Appl. Mater. Interfaces 11 45726Google Scholar

    [19]

    Yaqub T B, Vuchkov T, Sanguino P, Polcar T, Cavaleiro A 2020 Coatings 10 133Google Scholar

    [20]

    Yaqub T B, Kannur K H, Vuchkov T, Pupier C, Héau C, Cavaleiro A 2020 Mater. Lett. 275 128035Google Scholar

    [21]

    Li N, Liu Z T, Feng L P, Jia R T 2016 Surf. Eng. 32 299Google Scholar

    [22]

    Mao X, Li Z Q, Zou J P, Zhao G Y, Li D N, Song Z Q 2019 Appl. Surf. Sci. 487 719Google Scholar

    [23]

    Wu Q L, Fu X S, Yang K, Wu H Y, Liu L, Zhang L, Tian Y, Yin L J, Huang W Q, Zhang W, Wong P K J, Zhang L J, Wee A T S, Qin Z H 2021 ACS Nano 15 4481Google Scholar

    [24]

    Franklin A D 2015 Science 349 704Google Scholar

    [25]

    Chang Y S, Chen C Y, Ho C J, Cheng C M, Chen H R, Fu T Y, Huang Y T, Ke S W, Du H Y, Lee K Y 2021 Nano Energy 84 105922Google Scholar

    [26]

    Thureja D, Imamoglu A, Smoleński T, Amelio I, Popert A, Chervy T, Lu X, Liu S, Barmak K, Watanabe K 2022 Nature 606 298Google Scholar

    [27]

    Chouki T, Donkova B, Aktarla B, Stefanov P, Emin S 2021 Mater. Today Commun. 26 101976Google Scholar

    [28]

    Upadhyay S, Pandey O 2021 J. Alloy. Compd. 857 157522Google Scholar

    [29]

    Jäger-Waldau A, Lux-Steiner M, Jäger-Waldau R, Burkhardt R, Bucher E 1990 Thin Solid Films 189 339Google Scholar

    [30]

    李健, 朱洁 2007 物理学报 56 574Google Scholar

    Li J, Zhu J 2007 Acta Phys. Sin. 56 574Google Scholar

    [31]

    毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 物理学报 63 118802Google Scholar

    Mao Q N, Zhang X Y, Li X G, He J X, Yu P R, Wang D 2014 Acta Phys. Sin. 63 118802Google Scholar

    [32]

    Sharma C, Srivastava A K, Gupta M K 2023 Physica B 669 415290Google Scholar

    [33]

    Zeng F, Kong W Y, Liang Y H, Li F, Lvtao Y Z, Su Z H, Wang T, Peng B G, Ye L F, Chen Z H, Gao X Y, Huang J, Zheng R K, Yang X D 2023 Adv. Mater. 35 2306051Google Scholar

    [34]

    Mittal H, Raza M, Khanuja M 2023 MethodsX 11 102409Google Scholar

    [35]

    Kandar S, Bhatt K, Kumar N, Kapoor A K, Singh R 2024 ACS Appl. Nano Mater. 7 8212Google Scholar

    [36]

    Tao S M, Ma J F, Liu J J, Wang Y R, Xiao J R 2024 Int. J. Hydrog. Energy 58 829Google Scholar

    [37]

    Ohtake A, Sakuma Y 2021 J. Phys. Chem. C 125 11257Google Scholar

    [38]

    Shi N X, Liu G Z, Xi B J, An X G, Sun C H, Xiong S L 2024 Nano Res. 17 4023Google Scholar

    [39]

    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E 2014 ACS Nano 8 5125Google Scholar

    [40]

    Zhao S D, Lu M L, Xue S S, Yan L, Miao P, Hang Y, Wang X J, Liu Z G, Wang Y, Tao L, Sui Y, Wang Y 2019 arXiv: 1904.09789 [cond-mat.mtrl-sci]

    [41]

    Ahmad Y H, Kamand F Z, Zekri A, Chae K J, Aïssa B, Al-Qaradawi S Y 2023 Appl. Surf. Sci. 626 157205Google Scholar

    [42]

    Liu H L, Yang T, Chen J H, Chen H W, Guo H H, Saito R, Li M Y, Li L J 2020 Sci Rep 10 15282Google Scholar

    [43]

    Wang Z, Chen Y F, Wu P S, Ye J F, Peng M, Yan Y, Zhong F, He T, Wang Y, Xu M J 2020 Infrared Phys. Technol. 106 103272Google Scholar

    [44]

    黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 物理学报 66 137801Google Scholar

    Huang J W, Luo L Q, Jin B, Chu S J, Peng R F 2017 Acta Phys. Sin. 66 137801Google Scholar

    [45]

    Zhang X L, Zhou J, Li S Q, Wang Y Y, Zhang S P, Liu Y L, Gao J F, Zhao J J, Wang W P, Yu R C 2021 J. Phys. Chem. Lett. 12 5879Google Scholar

  • [1] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [2] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [3] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [4] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [5] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [6] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [7] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [8] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [9] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [10] 仲政祥, 郑家贵, 钟永强, 杨帆, 冯良桓, 蔡伟, 蔡亚平, 张静全, 黎兵, 雷智, 李卫, 武莉莉. 沉积条件对ZnTe/ZnTe:Cu薄膜结构及CdTe电池性能的影响. 物理学报, 2009, 58(7): 4920-4924. doi: 10.7498/aps.58.4920
    [11] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [12] 贾璐, 谢二庆, 潘孝军, 张振兴. 溅射制备非晶氮化镓薄膜的光学性能. 物理学报, 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [13] 邓金祥, 汪旭洋, 姚 倩, 周 涛, 张晓康. 立方氮化硼薄膜的光学带隙. 物理学报, 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [14] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响. 物理学报, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [15] 肖剑荣, 徐 慧, 李燕峰, 李明君. 氮分压对氮化铜薄膜结构及光学带隙的影响. 物理学报, 2007, 56(7): 4169-4174. doi: 10.7498/aps.56.4169
    [16] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响. 物理学报, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [17] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [18] 叶超, 宁兆元, 程珊华, 王响英. 氟化非晶碳薄膜的光学带隙分析. 物理学报, 2002, 51(11): 2640-2643. doi: 10.7498/aps.51.2640
    [19] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [20] 谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱. 用磁控溅射和真空硒化退火方法制备高质量的铜铟硒多晶薄膜. 物理学报, 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
计量
  • 文章访问数:  987
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-02
  • 修回日期:  2024-08-08
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回