搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超材料梁的双阶耦合带隙调控设计与宽带减振特性研究

刘权兴 何哲星 李永强 温激鸿 肖勇

引用本文:
Citation:

超材料梁的双阶耦合带隙调控设计与宽带减振特性研究

刘权兴, 何哲星, 李永强, 温激鸿, 肖勇

Double-order coupling bandgap design of metamaterial beams and broadband vibration reduciton properties

Liu Quan-Xing, He Zhe-Xing, Li Yong-Qiang, Wen Ji-Hong, Xiao Yong
PDF
导出引用
  • 局域共振带隙和Bragg带隙可同时存在于超材料梁中,利用两种带隙之间的相互耦合效应可以实现超宽耦合带隙设计,在宽带减振领域极具应用潜力。以往研究通常考虑单振子超材料梁的单阶耦合带隙设计,因而只能实现单阶的超宽耦合带隙,无法满足双目标或多目标频带的宽带减振需求。为此,本文开展了双振子超材料梁的双阶耦合带隙调控设计研究,提出了一种实现双阶耦合宽带隙的设计方法,分析了所设计双阶耦合带隙相比传统单阶耦合带隙的带宽优势,并探究了双振子质量分配比对双阶耦合带隙总宽度的影响,进一步设计出最优的质量分配比,使得实现的双阶耦合带隙的总宽度最宽。此外,本文还采用谱元法研究了基于双阶耦合带隙设计的双振子超材料梁的减振特性,通过与有限元法进行对比,验证了谱元法的准确性,研究表明基于双阶耦合带隙设计可以实现两个宽频带范围的高效减振。
    Local-resonance bandgap and Bragg bandgap can coexist in a metamaterial beam, and their coupling effect can be used to realize ultra-wide bandgap, which has great application potential in the field of wide-band vibration reduction. Previous studies usually consider the single-order coupling of local-resonance and Bragg bandgaps in metamaterial beams with a single array of local resonators, so that only a single-order ultra-wide coupling bandgap can be achieved, which cannot meet the needs of wide-band vibration reduction of double/multiple target frequency bands. In this paper, metamaterial beams with double arrays of local resonators are considered, and the regulation design and analysis of double-order coupling of local-resonance and Bragg bandgaps are carried out based on an analytical model of bending wave dispersion relation. Moreover, the vibration reduction characteristics of the double-frequency-resonator metamaterial beams with double-order coupling bandgaps are studied by using spectral element method and the finite element method. The main conclusions are as follows
    1) A design method for realizing double-order coupling wide bandgap in a metamaterial beam with double arrays of local resonators is proposed. By using this method, the resonance frequencies of the local resonators can be quickly designed under the conditions of given host beam parameters, lattice constant and added mass ratio of the local resonators.
    2) The double-order coupling bandgaps in a metamaterial beam carrying double arrays of local resonators are compared with the single-order coupling bandgaps in metamaterial beams with a single array of local resonators. It is found that, through proper design, the total normalized width of the double-order coupling bandgaps can be much broader than that of the single-order coupling bandgaps, so the double-order coupling bandgaps are more beneficial to wide-band vibration reduction.
    3) It is found that for a given total added mass ratio of the double arrays of local resonators, it is necessary to optimize the mass distribution ratio of the double resonators to achieve a maximization of the total normalized width of double-order coupling bandgaps. An approximate formula for designing the optimal mass distribution ratio of the double resonators is further established.
    4) The spectral element method is used to study the vibration reduction characteristics of the metamaterial beams carrying double arrays of local resonators designed based on double-order bandgap coupling. The accuracy of the spectral element method is verified by comparing with the finite element method. The results show that significant vibration reduction can be achieved in two wide frequency bands corresponding to the double-order coupling bandgaps. The influence of number of unit cells and resonator damping on the vibration reduction characteristics of the metamaterial beam is further analyzed. It is shown that the increase of number of unit cells can enhance the reduction performance in the bandgaps, and the increase of resonator damping can effectively broaden the vibration reduction frequency band.
  • [1]

    Wen Q H, Zuo S G, Wei H 2012 Acta Phys. Sin. 61 240(in Chinese)[文岐华, 左曙光, 魏欢 2012 物理学报 61 240]

    [2]

    Xiao Y, Wen J, Wen X 2012 J Phy D: Appl Phys 45 195401

    [3]

    Xiao Y, Mace B R, Wen J, Wen X 2011 Phys. Lett. A 375 1485

    [4]

    Zhang S W, Wu J H 2013 Acta Phys. Sin. 134301(in Chinese)[张思文, 吴九汇 2013 物理学报 134301]

    [5]

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 269(in Chinese)[刘娇, 侯志林, 傅秀军 2015 物理学报 64 269]

    [6]

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 10(in Chinese)[丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 10]

    [7]

    Xiao Y, Wang Y, Zhao H G, Yu D L, Wen J H 2023 J. Mech. Eng. 59 277(in Chinese)[肖勇, 王洋, 赵宏刚, 郁殿龙, 温激鸿 2023 机械工程学报 59 277]

    [8]

    Xu Q R, Shen C, Han F, Lu T J 2021 Acta Phys. Sin. 70 157(in Chinese)[胥强荣, 沈承, 韩峰, 卢天健 2021 物理学报 70 157]

    [9]

    Zhu X X, Xiao Y, Wen J H, Yu D L 2016 Acta Phys. Sin. 65 176202(in Chinese)[朱席席, 肖勇, 温激鸿, 郁殿龙 2016 物理学报 65 176202]

    [10]

    Lin G C, Sun H W, Tan H F, Du X W 2011 Acta Phys. Sin. 60 354(in Chinese)[林国昌, 孙宏伟, 谭惠丰, 杜星文 2011 物理学报 60 354]

    [11]

    Xiao Y, Wen J, Wen X 2012 New J. Phys. 14 33042

    [12]

    Xiao Y, Wen J, Yu D, Wen X 2013 J. Sound Vibr. 332 867

    [13]

    Zhou J, Wang K, Xu D, Ouyang H 2017 Phys. Lett. A 381 3141

    [14]

    Xiao Y, Wen J, Wen X 2012 Phys. Lett. A 376 1384

    [15]

    Frandsen N M M, Bilal O R, Jensen J S, Hussein M I 2016 J. Appl. Phys. 119 124902

    [16]

    Taniker S, Yilmaz C 2015 Int. J. Solids Struct. 72 88

    [17]

    Acar G, Yilmaz C 2013 J. Sound Vibr. 332 6389

    [18]

    Fang X, Wen J, Bonello B, Yin J, Yu D 2017 Nat. Commun. 8 1288

    [19]

    Zhang X, Yu H, He Z, Huang G, Chen Y, Wang G 2021 Mech. Syst. Signal Proc. 159 107826

    [20]

    Krushynska A O, Miniaci M, Bosia F, Pugno N M 2017 Extreme Mech. Lett. 12 30

    [21]

    Li Y, Xiao Y, Guo J, Zhu Z, Wen J 2022 Int. J. Mech. Sci. 234 107683

    [22]

    Guo J, Li Y, Xiao Y, Fan Y, Yu D, Wen J 2022 Compos. Struct. 289 115463

    [23]

    Xiao Y.2012 Ph.D. thesis (Changsha: National University of Defense Technology)(in Chinese)[肖勇.2012 博士学位论文 (长沙: 国防科学技术大学)]

  • [1] 孙涛, 袁健美. 基于迁移学习的钙钛矿材料带隙预测. 物理学报, doi: 10.7498/aps.72.20231027
    [2] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, doi: 10.7498/aps.69.20200084
    [3] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性. 物理学报, doi: 10.7498/aps.68.20191334
    [4] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, doi: 10.7498/aps.68.20182102
    [5] 沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. 负带隙HgCdTe体材料的磁输运特性研究. 物理学报, doi: 10.7498/aps.66.247301
    [6] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, doi: 10.7498/aps.66.224203
    [7] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, doi: 10.7498/aps.66.140701
    [8] 唐一璠, 林书玉. LCR分流电路下压电声子晶体智能材料的带隙. 物理学报, doi: 10.7498/aps.65.164202
    [9] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, doi: 10.7498/aps.65.157501
    [10] 吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿. 一种多频局域共振型声子晶体板的低频带隙与减振特性. 物理学报, doi: 10.7498/aps.65.064602
    [11] 朱席席, 肖勇, 温激鸿, 郁殿龙. 局域共振型加筋板的弯曲波带隙与减振特性. 物理学报, doi: 10.7498/aps.65.176202
    [12] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, doi: 10.7498/aps.62.124102
    [13] 高明, 吴志强. 一维三振子周期结构带隙设计. 物理学报, doi: 10.7498/aps.62.140507
    [14] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, doi: 10.7498/aps.61.108701
    [15] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, doi: 10.7498/aps.61.034301
    [16] 林国昌, 孙宏伟, 谭惠丰, 杜星文. 一种超材料梁对机械波振动吸收的模拟研究. 物理学报, doi: 10.7498/aps.60.034302
    [17] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, doi: 10.7498/aps.59.387
    [18] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, doi: 10.7498/aps.58.8357
    [19] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, doi: 10.7498/aps.56.4694
    [20] 成步文, 姚 飞, 薛春来, 张建国, 李传波, 毛容伟, 左玉华, 罗丽萍, 王启明. 带隙法测定SiGe/Si材料的应变状态. 物理学报, doi: 10.7498/aps.54.4350
计量
  • 文章访问数:  56
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-26

/

返回文章
返回