搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非理想测量基选择的水下连续变量量子密钥分发方案

吴晓东 黄端

引用本文:
Citation:

基于非理想测量基选择的水下连续变量量子密钥分发方案

吴晓东, 黄端
cstr: 32037.14.aps.73.20240804

Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice

Wu Xiao-Dong, Huang Duan
cstr: 32037.14.aps.73.20240804
PDF
HTML
导出引用
  • 在基于零差探测的水下连续变量量子密钥分发系统中, 测量基选择是必不可少的步骤. 然而在实际中, 接收端数模转换器的带宽有限, 这会导致测量基选择出现缺陷, 即接收方无法在相位调制器上精确地调制出相应的相位角来进行测量基选择以实施零差探测. 非理想测量基选择会引入额外的过噪声, 影响水下连续变量量子密钥分发方案的安全性. 针对这个问题, 本文提出基于非理想测量基选择的水下连续变量量子密钥分发方案, 详细分析非理想测量基选择对水下连续变量量子密钥分发系统性能的影响. 研究结果表明, 由非理想测量基选择所引入的过噪声能够降低水下高斯调制量子密钥分发的密钥率与最大传输距离, 因而降低系统的安全性. 为了实现可靠的水下连续变量量子密钥分发, 本文对非理想测量基选择所引入的额外过噪声进行定量分析并获得其安全界限, 并且考虑不同海水深度对所提出方案安全界限的影响, 有效地解决由非理想测量基选择所带来的安全隐患. 此外, 对所提出的方案, 本文不仅考虑了其渐近安全性, 也考虑了其组合安全性, 后者能够获得比前者更紧的性能曲线. 本文所提出的方案旨在推动水下连续变量量子密钥分发系统的实用化进程, 为全球量子通信网络的水下通信中水信道参数的准确评估提供理论指导.
    Measurement basis choice is an essential step in the underwater continuous variable quantum key distribution system based on homodyne detection. However, in practice, finite bandwidth of analog-to-digital converter on the receiver’s side is limited, which can result in defects in the measurement basis choice. That is, the receiver cannot accurately modulate the corresponding phase angle on the phase modulator for measurement basis choice to implement homodyne detection. The imperfect measurement basis choice will introduce extra excess noise, which affects the security of underwater continuous variable quantum key distribution scheme. To solve this problem, we propose an underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice, and analyze the influence of imperfect measurement basis choice on the performance of underwater continuous variable quantum key distribution system in detail. The research results indicate that the extra excess noise introduced by imperfect measurement basis choice can reduce the secret key rate and maximum transmission distance of the underwater Gaussian modulated quantum key distribution, thus reducing the security of the system. In order to achieve reliable underwater continuous variable quantum key distribution, we quantitatively analyze the extra excess noise introduced by choosing the imperfect measurement basis and obtain its security limit. Besides, we also consider the influence of different seawater depths on the security limit of the proposed scheme, effectively solving the security risks caused by the imperfect measurement basis choice. Furthermore, for the proposed scheme, we consider not only its asymptotic security case but also its composable security case, and the performance curves obtained in the latter are tighter than that achieved in the former. The proposed scheme aims to promote the practical process of underwater continuous variable quantum key distribution system and provide theoretical guidance for accurately evaluating the water channel parameters in underwater communication of global quantum communication networks.
      通信作者: 黄端, duanhuang@csu.edu.cn
    • 基金项目: 福建省自然科学基金(批准号: 2023J01940)和福建理工大学科研启动基金 (批准号: GY-Z22042)资助的课题.
      Corresponding author: Huang Duan, duanhuang@csu.edu.cn
    • Funds: Project supported by the Fujian Provincial Natural Science Foundation of China (Grant No. 2023J01940) and the Scientific Research Initiation Fund of Fujian University of Technology, China (Grant No. GY-Z22042).
    [1]

    Zeng Z, Fu S, Zhang H, Dong Y, Cheng J 2017 IEEE Commun. Surv. Tutorials 19 204Google Scholar

    [2]

    Hanson F, Radic S 2008 Appl. Opt. 47 277Google Scholar

    [3]

    Kong M, Wang J, Chen Y, Ali T, Sarwar R, Qiu Y, Wang S, Han J, Xu J 2017 Opt. Express 25 21509Google Scholar

    [4]

    Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171Google Scholar

    [5]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [8]

    Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [9]

    Zahidy M, Mikkelsen M T, Müller R, Lio B D, Krehbiel M, Wang Y, Bart N, Wieck A D, Ludwig A, Galili M, Forchhammer S, Lodahl P, Oxenløwe L K, Bacco D, Midolo L 2024 npj Quantum Inf. 10 2Google Scholar

    [10]

    Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801Google Scholar

    [11]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [12]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [13]

    Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [14]

    吴晓东, 黄端 2023 物理学报 72 050303Google Scholar

    Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303Google Scholar

    [15]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [16]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [17]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [18]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [19]

    Leverrier A, García-Patrón R, Renner R, Cerf N J 2013 Phys. Rev. Lett. 110 030502Google Scholar

    [20]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [21]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [22]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [23]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [24]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [25]

    Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [26]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [27]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [28]

    Williams B P, Qi B, Alshowkan M, Evans P G, Peters N A 2024 Phys. Rev. Appl. 21 014056Google Scholar

    [29]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [30]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [31]

    吴晓东, 黄端 2024 物理学报 73 020304Google Scholar

    Wu X D, Huang D 2024 Acta Phys. Sin. 73 020304Google Scholar

    [32]

    Zhao W, Shi R, Wu X, Wang F, Ruan X 2023 Opt. Express 31 17003Google Scholar

    [33]

    Shi P, Zhao S C, Gu Y J, Li W D 2015 J. Opt. Soc. Am. A: 32 349Google Scholar

    [34]

    Zhao S C, Han X H, Xiao Y, Shen Y, Gu Y J, Li W D 2019 J. Opt. Soc. Am. A: 36 883Google Scholar

    [35]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795Google Scholar

    [36]

    Feng Z, Li S, Xu Z 2021 Opt. Express 29 8725Google Scholar

    [37]

    Zhao S, Li W, Shen Y, Yu Y H, Han X H, Zeng H, Cai M, Qian T, Wang S, Wang Z, Xiao Y, Gu Y 2019 Appl. Opt. 58 3902Google Scholar

    [38]

    Hu C Q, Yan Z Q, Gao J, Li Z M, Zhou H, Dou J P, Jin X M 2021 Phys. Rev. Appl. 15 024060Google Scholar

    [39]

    Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220Google Scholar

    [40]

    Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D, Zeng G H 2018 Phys. Rev. A 97 052326Google Scholar

    [41]

    Xie C L, Guo Y, Wang Y J, Huang D, Zhang L 2018 Chin. Phys. Lett. 35 090302Google Scholar

    [42]

    Ruan X, Zhang H, Zhao W, Wang X, Li X, Guo Y 2019 Appl. Sci. 9 4956Google Scholar

    [43]

    Mao Y, Wu X, Huang W, Liao Q, Deng H, Wang Y, Guo Y 2020 Appl. Sci. 10 5744Google Scholar

    [44]

    Xiang Y, Wang Y, Ruan X, Zuo Z, Guo Y 2021 Phys. Scr. 96 065103Google Scholar

    [45]

    Tang X, Chen Z, Zhao Z, Kumar R, Dong Y 2022 Opt. Express 30 32428Google Scholar

    [46]

    Liu W, Peng J, Qi J, Cao Z, He C 2020 Laser Phys. Lett. 17 055203Google Scholar

    [47]

    Gilerson A, Zhou J, Hlaing S, Ioannou I, Schalles J, Gross B, Moshary F, Ahmed S 2007 Opt. Express 15 15702Google Scholar

    [48]

    Gariano J, Djordjevic I B 2019 Opt. Express 27 3055Google Scholar

    [49]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [50]

    Prieur L, Sathyendranath S 1981 Limnol. Oceanogr. 26 671Google Scholar

    [51]

    Uitz J, Claustre H, Morel A, Hooker S B 2006 J. Geophys. Res. Oceans. 111 C08005Google Scholar

  • 图 1  基于非理想测量基选择的水下CV-QKD制备-测量方案图. RNG为随机数发生器, AM为振幅调制器, PM为相位调制器, MBC表示测量基选择, $ {T_{\text{s}}} $表示海水信道的透过率, $ {\xi _{\text{s}}} $表示海水信道过噪声

    Fig. 1.  Prepare-and-measure version of underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. RNG, random number generator; AM, amplitude modulator; PM, phase modulator; MBC, measurement basis choice; $ {T_{\text{s}}} $, the transmittance of seawater channel; $ {\xi _{\text{s}}} $, the excess noise of seawater channel.

    图 2  基于非理想测量基选择的水下CV-QKD纠缠模型原理图(QM为量子存储器)

    Fig. 2.  Schematic diagram of the entanglement-based model of underwater continuous variable quantum key distribution scheme based on imperfect basis choice (QM, quantum memory).

    图 3  零差探测器的探测原理图(LO为本振光, PM为相位调制器, BS为分束器, PD1(2)为光电探测器)

    Fig. 3.  Principle of balanced homodyne detector. LO, local oscillator; PM, phase modulator; BS, beam splitter; PD1(2), photodetector.

    图 4  所提出方案的渐近密钥率与传输距离在不同参数$ \mu $下的关系

    Fig. 4.  Relationship between the asymptotic secret key rate of the proposed scheme and the transmission distance under different parameters $ \mu $.

    图 5  所提出方案的渐近密钥率与协商效率在不同参数$ \mu $下的关系

    Fig. 5.  Relationship between the asymptotic secret key rate of the proposed scheme and the reconciliation efficiency under different parameters $ \mu $.

    图 6  所提出方案的密钥率与参数$ \mu $在不同海水深度$ h $下的关系

    Fig. 6.  Relationship between the asymptotic secret key rate of the proposed scheme and the parameter $ \mu $ under different seawater depths $ h $.

    图 7  非理想测量基选择情况下所提出的方案与基于BL模型的水下CV-QKD方案性能比较

    Fig. 7.  Performance comparison between the proposed scheme and the underwater CV-QKD scheme based on BL model under imperfect measurement basis choice.

    图 8  所提出方案的组合密钥率与用于交换的有效脉冲总数在不同参数$ \mu $下的关系

    Fig. 8.  Relationship between the composable secret key rate of the proposed scheme and the number of exchanged signals under different parameters $ \mu $.

    图 9  非理想测量基选择情况下所提出的方案与基于BL模型的水下CV-QKD方案组合密钥率比较

    Fig. 9.  Composable secret key rate comparison between the proposed scheme and the underwater CV-QKD scheme based on BL model under imperfect measurement basis choice.

  • [1]

    Zeng Z, Fu S, Zhang H, Dong Y, Cheng J 2017 IEEE Commun. Surv. Tutorials 19 204Google Scholar

    [2]

    Hanson F, Radic S 2008 Appl. Opt. 47 277Google Scholar

    [3]

    Kong M, Wang J, Chen Y, Ali T, Sarwar R, Qiu Y, Wang S, Han J, Xu J 2017 Opt. Express 25 21509Google Scholar

    [4]

    Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171Google Scholar

    [5]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [8]

    Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [9]

    Zahidy M, Mikkelsen M T, Müller R, Lio B D, Krehbiel M, Wang Y, Bart N, Wieck A D, Ludwig A, Galili M, Forchhammer S, Lodahl P, Oxenløwe L K, Bacco D, Midolo L 2024 npj Quantum Inf. 10 2Google Scholar

    [10]

    Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801Google Scholar

    [11]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [12]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [13]

    Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [14]

    吴晓东, 黄端 2023 物理学报 72 050303Google Scholar

    Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303Google Scholar

    [15]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [16]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [17]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [18]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [19]

    Leverrier A, García-Patrón R, Renner R, Cerf N J 2013 Phys. Rev. Lett. 110 030502Google Scholar

    [20]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [21]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [22]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [23]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [24]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [25]

    Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [26]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [27]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [28]

    Williams B P, Qi B, Alshowkan M, Evans P G, Peters N A 2024 Phys. Rev. Appl. 21 014056Google Scholar

    [29]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [30]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [31]

    吴晓东, 黄端 2024 物理学报 73 020304Google Scholar

    Wu X D, Huang D 2024 Acta Phys. Sin. 73 020304Google Scholar

    [32]

    Zhao W, Shi R, Wu X, Wang F, Ruan X 2023 Opt. Express 31 17003Google Scholar

    [33]

    Shi P, Zhao S C, Gu Y J, Li W D 2015 J. Opt. Soc. Am. A: 32 349Google Scholar

    [34]

    Zhao S C, Han X H, Xiao Y, Shen Y, Gu Y J, Li W D 2019 J. Opt. Soc. Am. A: 36 883Google Scholar

    [35]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795Google Scholar

    [36]

    Feng Z, Li S, Xu Z 2021 Opt. Express 29 8725Google Scholar

    [37]

    Zhao S, Li W, Shen Y, Yu Y H, Han X H, Zeng H, Cai M, Qian T, Wang S, Wang Z, Xiao Y, Gu Y 2019 Appl. Opt. 58 3902Google Scholar

    [38]

    Hu C Q, Yan Z Q, Gao J, Li Z M, Zhou H, Dou J P, Jin X M 2021 Phys. Rev. Appl. 15 024060Google Scholar

    [39]

    Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220Google Scholar

    [40]

    Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D, Zeng G H 2018 Phys. Rev. A 97 052326Google Scholar

    [41]

    Xie C L, Guo Y, Wang Y J, Huang D, Zhang L 2018 Chin. Phys. Lett. 35 090302Google Scholar

    [42]

    Ruan X, Zhang H, Zhao W, Wang X, Li X, Guo Y 2019 Appl. Sci. 9 4956Google Scholar

    [43]

    Mao Y, Wu X, Huang W, Liao Q, Deng H, Wang Y, Guo Y 2020 Appl. Sci. 10 5744Google Scholar

    [44]

    Xiang Y, Wang Y, Ruan X, Zuo Z, Guo Y 2021 Phys. Scr. 96 065103Google Scholar

    [45]

    Tang X, Chen Z, Zhao Z, Kumar R, Dong Y 2022 Opt. Express 30 32428Google Scholar

    [46]

    Liu W, Peng J, Qi J, Cao Z, He C 2020 Laser Phys. Lett. 17 055203Google Scholar

    [47]

    Gilerson A, Zhou J, Hlaing S, Ioannou I, Schalles J, Gross B, Moshary F, Ahmed S 2007 Opt. Express 15 15702Google Scholar

    [48]

    Gariano J, Djordjevic I B 2019 Opt. Express 27 3055Google Scholar

    [49]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [50]

    Prieur L, Sathyendranath S 1981 Limnol. Oceanogr. 26 671Google Scholar

    [51]

    Uitz J, Claustre H, Morel A, Hooker S B 2006 J. Geophys. Res. Oceans. 111 C08005Google Scholar

  • [1] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241094
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [3] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [4] 张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元. 连续变量量子密钥分发系统中动态偏振控制研究. 物理学报, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [5] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [6] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [7] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案. 物理学报, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [8] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [9] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [10] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [11] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [12] 曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟. 基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现. 物理学报, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [13] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [14] 任秀云, 田兆硕, 杨敏, 孙兰君, 付石友. 相干瑞利散射海水水下温度测量技术的理论研究. 物理学报, 2014, 63(8): 083302. doi: 10.7498/aps.63.083302
    [15] 李伦, 吴雄斌. 高频地波雷达多站浅海水深与海流反演. 物理学报, 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [16] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [17] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [18] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [19] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [20] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
计量
  • 文章访问数:  643
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-08-27
  • 上网日期:  2024-09-19
  • 刊出日期:  2024-11-05

/

返回文章
返回