搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥角调制的圆艾里涡旋光束构建光学针

陆万利

引用本文:
Citation:

锥角调制的圆艾里涡旋光束构建光学针

陆万利

Optical needle constructed by conical-angle modulated circular Airy vortex beams

Lu Wan-Li
PDF
HTML
导出引用
  • 光学针是一种特殊的空间光场分布, 具有极小的横向光斑尺寸, 可以突破衍射极限, 同时在纵向上拥有较长的焦深. 光学针通常利用透镜对光束进行紧聚焦来产生, 本文利用圆艾里光束固有的自聚焦特性来构建光学针. 研究结果表明, 锥角调制的圆偏振圆艾里涡旋光束在选取合适的拓扑荷后, 可以产生光学针. 这是因为在锥角调制下, 光束的纵向分量被显著增强, 而纵向分量光场具有极小的横向光斑尺寸. 光学针的焦深与光束的主环半径近似呈线性关系, 因此增大主环半径可以有效增强光学针的焦深. 此外, 具有不同拓扑荷的圆艾里涡旋光束可以构建出不同结构的空间光场. 本文的研究有望在超分辨成像和光学微操控等领域具有潜在应用价值.
    An optical needle is a specialized spatial light field characterized by an extremely small transverse spot size, capable of breaking through the diffraction limit, and also prossessing a long focal depth in the longitudinal direction. Typically, optical needles are generated by tightly focusing a beam using a lens. In this work, the generation of optical needles is demonstrated by using circular Airy vortex beams (CAVBs) through adjusting the conical angle. The CAVBs have a uniform distribution of circular polarization, thus eliminating the need for radial polarization states. Our research indicates that under the conical angle modulation, CAVBs with a topological charge of –1 (left-handed circular polarization) and 1 (right-handed circular polarization) can form optical needles. These optical needles possess a minimal transverse spot size, enabling them to exceed the diffraction limit while maintaining a long depth of focus. Furthermore, the depth of focus of the optical needle is almost linearly related to the primary ring radius of the beam. Increasing the primary ring radius can effectively enhance the depth of focus. CAVBs with different topological charges generate distinct hollow light fields, unlike optical needles. This is because the longitudinal component of the light beam is significantly enhanced by adjusting the conical angle. Only CAVBs with the appropriate topological charge exhibit a longitudinal light field near the optical axis, leading to the formation of optical needles. In contrast, other charges result in a hollow longitudinal light field, creating different hollow light fields. These research findings could have significant applications in super-resolution imaging and optical micromanipulation.
      通信作者: 陆万利, luwl@cumt.edu.cn
    • 基金项目: 中国矿业大学重点学科经费(批准号: 2022WLXK09)资助的课题.
      Corresponding author: Lu Wan-Li, luwl@cumt.edu.cn
    • Funds: Project supported by the Key Academic Discipline Project of China University of Mining and Technology (Grant No. 2022WLXK09).
    [1]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045Google Scholar

    [2]

    Lu W, Sun X, Chen H, Liu S, Lin Z 2019 Phys. Rev. A 99 013817Google Scholar

    [3]

    Efremidis N K 2011 Opt. Lett. 36 3006Google Scholar

    [4]

    Chremmos I, Efremidis N K, Christodoulides D N 2011 Opt. Lett. 36 1890Google Scholar

    [5]

    Chremmos I D, Chen Z, Christodoulides D N, Efremidis N K 2012 Phys. Rev. A 85 023828Google Scholar

    [6]

    Jiang Y, Zhu X, Yu W, Shao H, Zheng W, Lu X 2015 Opt. Express 23 29834Google Scholar

    [7]

    Sun X, An Z, Lu W 2020 IEEE Photonics J. 12 1

    [8]

    Hwang C Y, Kim K Y, Lee B 2012 IEEE Photonics J. 4 174Google Scholar

    [9]

    Zhong H, Zhang Y, Belić M R, Li C, Wen F, Zhang Z, Zhang Y 2016 Opt. Express 24 7495Google Scholar

    [10]

    Davis J A, Cottrell D M, Sand D 2012 Opt. Express 20 13302Google Scholar

    [11]

    Jiang Y, Huang K, Lu X 2012 Opt. Express 20 18579Google Scholar

    [12]

    Dai H T, Liu Y J, Luo D, Sun X W 2010 Opt. Lett. 35 4075Google Scholar

    [13]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 2883Google Scholar

    [14]

    Jiang Y, Huang K, Lu X 2013 Opt. Express 21 24413Google Scholar

    [15]

    Panagiotopoulos P, Papazoglou D, Couairon A, Tzortzakis S 2013 Nat. Commun. 4 2622Google Scholar

    [16]

    Manousidaki M, Papazoglou D G, Farsari M, Tzortzakis S 2016 Optica 3 525Google Scholar

    [17]

    Efremidis N K, Paltoglou V, von Klitzing W 2013 Phys. Rev. A 87 043637Google Scholar

    [18]

    Jiang X, Li Y, Ta D, Wang W 2020 Phys. Rev. B 102 064308Google Scholar

    [19]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605Google Scholar

    [20]

    Liu S, Wang M, Li P, Zhang P, Zhao J 2013 Opt. Lett. 38 2416Google Scholar

    [21]

    An Z, Lu W 2024 Opt. Lett. 49 642Google Scholar

    [22]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photonics 2 501Google Scholar

    [23]

    Zhan Q 2009 Adv. Opt. Photonics 1 1Google Scholar

    [24]

    Dehez H, April A, Piché M 2012 Opt. Express 20 14891Google Scholar

    [25]

    Wang F, Zhao C, Dong Y, Dong Y, Cai Y 2014 Appl. Phys. B 117 905Google Scholar

    [26]

    Lu W, Chen H, Liu S, Lin Z 2022 Phys. Rev. A 105 043516Google Scholar

    [27]

    Novotny L, Hecht B 2006 Principles of Nano-optics (Cambridge: Cambridge University Press) pp38–41

  • 图 1  左旋圆偏振CAVBs的光场强度$ | {\boldsymbol{E}}|^2 $分布 (a) 锥角$ \gamma = 0^\circ $; (b) 锥角$ \gamma = -30^\circ $. (c) 图(b)中沿z轴光场强度的横向分量$ I_\bot $与纵向分量$ I_z $的分布. 所用参数$ E_0 = 1 $ V/m, 波长$ \lambda = 0.532 $ μm, 主环半径$ r_0 = 10\lambda $, 主环宽度$ w_0 = 1.5\lambda $, 衰减因子$ \alpha_{\mathrm{c}} = 0.08 $, 以及拓扑荷$ l = -1 $

    Fig. 1.  Distribution of the field intensity $ | {\boldsymbol{E}}|^2 $ of circularly polarized CAVBs with conical angles (a) $ \gamma = 0^\circ $ and (b) $ \gamma = -30^\circ $. (c) Profiles of field intensity $ I_\bot $ and $ I_z $ along z-axis corresponding to panel (b). The parameters are given by $ E_0 = 1 $ V/m, the wavelength $ \lambda = 0.532 $ μm, the primary ring radius $ r_0 = 10\lambda $, the primary ring width $ w_0 = 1.5\lambda $, the decay parameter $ \alpha_{\mathrm{c}} = 0.08 $, and the topological charge $ l = -1 $.

    图 2  基于拓扑荷为$ l = -1 $的左旋圆偏振CAVBs构建光学针 (a) 光学针的光场强度$ | {\boldsymbol{E}}|^2 $在x-z平面内的分布; (b) 光学针的光场强度$ I = | {\boldsymbol{E}}|^2 $, 以及纵向光强分量$ I_z $和横向光强分量$ I_\bot $在x-y平面内的分布, 对应的传播距离为$ z = 10\lambda $; (c) 不同传播距离处, 光学针的光强度I, $ I_z $及$ I_\bot $沿x轴的分布. 这里光束的锥角$ \gamma = -65^\circ $, 主环半径$ r_0 = 50\lambda $, 其余参数与图1相同

    Fig. 2.  Optical needle structured via left circularly polarized CAVBs with the topological charge $ l = -1 $: (a) Optical intensity $ | {\boldsymbol{E}}|^2 $ along the x-z plane; (b) profile of intensity $ I = | {\boldsymbol{E}}|^2 $, longitudinal intensity $ I_z $ and transverse intensity $ I_\bot $ along the x-y plane of the optical needle with the propagation distance $ z = 10\lambda $; (c) distributions of the intensity I, transverse intensity $ I_\bot $ and longitudinal intensity $ I_z $ along x-axis with different propagation distance. The conical angle is $ \gamma = -65^\circ $ and the primary ring radius $ r_0 = 50\lambda $, and other parameters are the same as those in Fig. 1.

    图 3  左旋圆偏振CAVBs构建的光学针受锥角γ的调制, 光束的主环半径$ r_0 = 30\lambda $, 拓扑荷$ l = -1 $ (a) 不同锥角调制下的CAVBs在x-z平面内的光强度分布; (b) 不同锥角下, CAVBs的光强I及其分量$ I_\bot $与$ I_z $沿x轴的分布, 对应的传播距离z在(a)图中使用白色虚线标出; (c) 光学针的焦深随主环半径$ r_0 $的变化关系. 其余参数与图1相同

    Fig. 3.  Influence of conical angle γ on optical needles structured via the left-handed circularly polarized CAVBs with the primary ring radius $ r_0 = 30\lambda $ and the topological charge $ l = -1 $: (a) Distributions of the field intensity along the x-z plane and (b) profiles of the intensity I, $ I_\bot $ and $ I_z $ along the x-axis corresponding to the propagation distance z denoted via the white dash lines in panel (a). (c) DOF of the optical needles varying as the primary ring radius $ r_0 $. Other parameters are the same as those in Fig. 1.

    图 4  (a) CAVBs在x-z平面内的光强度分布, 光束的锥角$ \gamma = -65^\circ $, 主环半径$ r_0 = 30\lambda $, 拓扑荷分别为$ l = -2 $, 0, 1, 2, 其余参数与图1相同; (b) 不同光束在$ z = 0 $平面沿x轴的归一化光强度分布, 图中的灰色区域表示中空光场的中心暗区范围

    Fig. 4.  (a) Field intensity profiles of CAVBs with the conical angle $ \gamma = -65^\circ $ and the primary ring radius $ r_0 = 30\lambda $ along the x-z plane for different topological charge $ l = -2 $, 0, 1, and 2, and other parameters are the same as those in Fig. 1; (b) normalized field intensity distributions of different light beams along the x-axis on the plane of $ z = 0 $, and the gray rectangles in the figure represent the central dark area of the hollow optical fields.

  • [1]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045Google Scholar

    [2]

    Lu W, Sun X, Chen H, Liu S, Lin Z 2019 Phys. Rev. A 99 013817Google Scholar

    [3]

    Efremidis N K 2011 Opt. Lett. 36 3006Google Scholar

    [4]

    Chremmos I, Efremidis N K, Christodoulides D N 2011 Opt. Lett. 36 1890Google Scholar

    [5]

    Chremmos I D, Chen Z, Christodoulides D N, Efremidis N K 2012 Phys. Rev. A 85 023828Google Scholar

    [6]

    Jiang Y, Zhu X, Yu W, Shao H, Zheng W, Lu X 2015 Opt. Express 23 29834Google Scholar

    [7]

    Sun X, An Z, Lu W 2020 IEEE Photonics J. 12 1

    [8]

    Hwang C Y, Kim K Y, Lee B 2012 IEEE Photonics J. 4 174Google Scholar

    [9]

    Zhong H, Zhang Y, Belić M R, Li C, Wen F, Zhang Z, Zhang Y 2016 Opt. Express 24 7495Google Scholar

    [10]

    Davis J A, Cottrell D M, Sand D 2012 Opt. Express 20 13302Google Scholar

    [11]

    Jiang Y, Huang K, Lu X 2012 Opt. Express 20 18579Google Scholar

    [12]

    Dai H T, Liu Y J, Luo D, Sun X W 2010 Opt. Lett. 35 4075Google Scholar

    [13]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 2883Google Scholar

    [14]

    Jiang Y, Huang K, Lu X 2013 Opt. Express 21 24413Google Scholar

    [15]

    Panagiotopoulos P, Papazoglou D, Couairon A, Tzortzakis S 2013 Nat. Commun. 4 2622Google Scholar

    [16]

    Manousidaki M, Papazoglou D G, Farsari M, Tzortzakis S 2016 Optica 3 525Google Scholar

    [17]

    Efremidis N K, Paltoglou V, von Klitzing W 2013 Phys. Rev. A 87 043637Google Scholar

    [18]

    Jiang X, Li Y, Ta D, Wang W 2020 Phys. Rev. B 102 064308Google Scholar

    [19]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605Google Scholar

    [20]

    Liu S, Wang M, Li P, Zhang P, Zhao J 2013 Opt. Lett. 38 2416Google Scholar

    [21]

    An Z, Lu W 2024 Opt. Lett. 49 642Google Scholar

    [22]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photonics 2 501Google Scholar

    [23]

    Zhan Q 2009 Adv. Opt. Photonics 1 1Google Scholar

    [24]

    Dehez H, April A, Piché M 2012 Opt. Express 20 14891Google Scholar

    [25]

    Wang F, Zhao C, Dong Y, Dong Y, Cai Y 2014 Appl. Phys. B 117 905Google Scholar

    [26]

    Lu W, Chen H, Liu S, Lin Z 2022 Phys. Rev. A 105 043516Google Scholar

    [27]

    Novotny L, Hecht B 2006 Principles of Nano-optics (Cambridge: Cambridge University Press) pp38–41

  • [1] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [2] 宁啸坤, 耿滔. 频谱非对称包络调制的圆对称艾里光束的传播特性研究. 物理学报, 2022, 71(10): 104201. doi: 10.7498/aps.71.20220019
    [3] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [4] 相阳, 郑军, 李春雷, 王小明, 袁瑞旸. 圆偏振光场调控的锡烯纳米带热自旋输运. 物理学报, 2021, 70(14): 147301. doi: 10.7498/aps.70.20210197
    [5] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法. 物理学报, 2020, 69(1): 014205. doi: 10.7498/aps.69.20191088
    [6] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [7] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] 陈卫军, 宋德, 李野, 王新, 秦旭磊, 刘春阳. 竞争型非线性介质中艾里-高斯光束交互作用的调控. 物理学报, 2019, 68(9): 094206. doi: 10.7498/aps.68.20190042
    [10] 杜闯, 贾大功, 张红霞, 刘铁根, 张以谟. 环形光束锥形衍射出射光场偏振特性及光场调控. 物理学报, 2017, 66(12): 124202. doi: 10.7498/aps.66.124202
    [11] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [12] 张昊, 常琛亮, 夏军. 单环多段光强分布检测光学涡旋拓扑荷值. 物理学报, 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [13] 唐碧华, 罗亚梅, 姜云海, 陈淑琼. 双曲余弦高斯涡旋光束的远场特性研究. 物理学报, 2013, 62(13): 134202. doi: 10.7498/aps.62.134202
    [14] 欧阳世根. 自散焦非局域非线性材料中的光学涡旋孤子. 物理学报, 2013, 62(4): 040504. doi: 10.7498/aps.62.040504
    [15] 方桂娟, 孙顺红, 蒲继雄. 分数阶双涡旋光束的实验研究. 物理学报, 2012, 61(6): 064210. doi: 10.7498/aps.61.064210
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] 黎扬钢, 佘卫龙, 王红成. 光致异构聚合物中相互作用光学空间孤子对的垂直光调控. 物理学报, 2007, 56(4): 2229-2236. doi: 10.7498/aps.56.2229
    [18] 黎扬钢, 佘卫龙. 光致异构聚合物中光学空间孤子的垂直全光调控. 物理学报, 2007, 56(2): 895-901. doi: 10.7498/aps.56.895
    [19] 凌振芳, 郭儒, 刘思敏, 张光寅. 光生伏打-光折变介质中光学涡旋孤子. 物理学报, 2000, 49(3): 455-459. doi: 10.7498/aps.49.455
    [20] 许超, 张静娟, 陈俊本. 用于圆对称光束波前变换的位相型光学系统. 物理学报, 1993, 42(8): 1245-1251. doi: 10.7498/aps.42.1245
计量
  • 文章访问数:  1119
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 修回日期:  2024-07-26
  • 上网日期:  2024-08-08
  • 刊出日期:  2024-09-05

/

返回文章
返回