搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用

汪帆帆 陈栋 袁军 张珠峰 姜涛 周骏

引用本文:
Citation:

Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用

汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏
cstr: 32037.14.aps.73.20241138

Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application

Wang Fan-Fan, Chen Dong, Yuan Jun, Zhang Zhu-Feng, Jiang Tao, Zhou Jun
cstr: 32037.14.aps.73.20241138
PDF
HTML
导出引用
  • 基于二维锡基材料与锑烯单层构建了具有不同层间转角的6种Sb/SnC二维范德瓦耳斯异质结, 并根据第一性原理对其光电性质及应用开展研究. 研究结果表明, 6种层间转角的Sb/SnC异质结具有不同的带隙, 且当层间转角为10.89°, 19.11°, 23.41°和30°时, Sb/SnC异质结显示出I型能带结构, 而当层间转角为8.95°和13.59°时, 则是II型能带结构. 同时, 6种异质结的轨道投影带结构表明, 由于层间转角改变了异质结的原子堆叠方式, 从而改变了轨道耦合并进一步调控了异质结的电子结构. 此外, 吸收谱的计算表明, 与Sb和SnC单层相比, 异质结的光吸收系数在可见光区域得到显著增强, 且对应不同的层间转角, 异质结的光吸收特性差异明显. 在应用方面, 作为太阳能电池材料, 层间转角为8.95°和13.59°的Sb/SnC异质结分别具有17.48%和18.59%的光电转化效率; 作为全解水光催化剂, 层间转角为8.95°的异质结可对pH值为0—2的水完全催化分解, 而层间转角为13.59°的异质结仅可以对pH值为0—1的水进行催化分解. 因此, 作为一个重要的结构参数, 层间转角可以有效地调控Sb/SnC异质结的光电特性, 具有特定转角的Sb/SnC异质结可在太阳能和光催化领域获得应用.
    The discovery of novel properties in twisted bilayer graphene has opened up new avenues of research in physics and materials science, making the twistronics a new research hotspot. In this paper, based on two-dimensional tin-based materials and antimonene monolayers, six types of Sb/SnC two-dimensional van der Waals heterostructures (vdWH) with different interlayer twist angles are constructed, and their optoelectronic properties and applications are studied by first-principles calculations. All modeling and calculations are performed using the density functional theory (DFT) software Quantum-ATK. The results show that the Sb/SnC vdWHs with six different interlayer twist angles have various band gaps, and when the interlayer twist angles are 10.89°, 19.11°, 23.41°, and 30°, the Sb/SnC vdWH exhibit a type-I band edge alignment, while at 8.95° and 13.59°, they present a type-II band structure. The results of the orbital-projected band structures of the Sb/SnC vdWHs reveal that the variation in interlayer twist angles changes the atomic stacking in the heterostructures, thereby modifying orbital coupling and further tuning the electronic structure of the heterostructures. Additionally, the calculated absorption spectra indicate that comparing individual Sb and SnC monolayers with Sb/SnC vdWHs, the latter’s absorption coefficient r is significantly enhanced in the visible light region, and the optical absorption characteristics of the heterostructures with different interlayer twist angles vary markedly. In terms of applications, as materials for solar cells, the Sb/SnC vdWHs with interlayer twist angles of 8.95° and 13.59° exhibit photovoltaic conversion efficiencies of 17.48% and 18.59%, respectively; as photocatalysts for the complete water splitting, the Sb/SnC vdWH with an interlayer twist angle of 8.95° can catalytically decompose water across a pH range of 0–2, while a twist angle of 13.59° confines its catalytic activity to a pH value between 0 and 1. Therefore, Sb/SnC van der Waals heterostructures have special rotation angles and have multifunctional application prospects in the fields of solar energy and photocatalysis. More importantly, our research demonstrates that in addition to traditional methods such as strain, doping, and defects, adjusting the interlayer twist angle provides a new degree of freedom for manipulating the optoelectronic properties of materials.
      通信作者: 周骏, zhoujun@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62375146, 61675104, 61320106014)和宁波大学王宽诚幸福基金资助的课题.
      Corresponding author: Zhou Jun, zhoujun@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375146, 61675104, 61320106014) and the K. C. Wong Magna Fund in Ningbo University, China.
    [1]

    Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [2]

    Carr S, Massatt D, Fang S A, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [3]

    Carr S, Fang S A, Kaxiras E 2020 Nat. Rev. Mater. 5 748Google Scholar

    [4]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [5]

    Ren Y N, Zhang Y, Liu Y W, He L 2020 Chin. Phys. B 29 117303Google Scholar

    [6]

    Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [7]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [8]

    Ninno G De, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nat. Photon. 14 554Google Scholar

    [9]

    Tebyetekerwa M, Truong T N, Yan W, Tang C, Wibowo A A, Bullock J, Du A, Yan C, Macdonald D, Nguyen H T 2022 Adv. Mat. Inter. 9 2201649Google Scholar

    [10]

    Liu B Y, Zhang Y T, Qiao R X, Shi R C, Li Y H, Guo Q L, Li J D, Li X M, Wang L, Qi J J, Du S X, Ren X G, Liu K H, Gao P, Zhang Y Y 2023 Phys. Rev. Lett. 131 016201Google Scholar

    [11]

    Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L, Feldman B E 2024 Science 384 343Google Scholar

    [12]

    Hidalgo F, Sánchez-Ochoa F, Noguez C 2023 npj 2D Mater. Appl. 7 40Google Scholar

    [13]

    Fadaie M, Shahtahmassebi N, Roknabad M R, Gulseren O 2017 Comput. Mater. Sci. 137 208Google Scholar

    [14]

    Dai Z N, Cao Y, Yin W J, Sheng W, Xu Y 2022 J. Phys. D: Appl. Phys. 55 315503Google Scholar

    [15]

    Jiang X X, Gao Q, Xu X H, Xu G, Li D M, Cui B, Liu D S, Qu F Y 2021 Phys. Chem. Chem. Phys. 23 21641Google Scholar

    [16]

    Niu T C, Meng Q L, Zhou D C, Si N, Zhai S W, Hao X M, Zhou M, Fuchs H 2020 Adv. Mater. 32 1906873Google Scholar

    [17]

    Sun S, Yang T, Luo Y Z, Gou J, Huang Y L, Gu C D, Ma Z R, Lian X, Duan S S, Wee A T S, Lai M, Zhang J L, Feng Y P, Chen W 2020 J. Phys. Chem. Lett. 11 8976Google Scholar

    [18]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. Engl. 54 3112Google Scholar

    [19]

    Singh D, Gupta S K, Sonvane Y, Lukačević I 2016 J. Mater. Chem. C 4 6386Google Scholar

    [20]

    Shakil M, Rehman A, Nabi G, Tanveer M, Gillani S, Al-Buriahi M S, Tamam N, Alrowaili Z A 2023 Physica B: Condens. Matter 670 415389Google Scholar

    [21]

    Zheng K, Cui H P, Yu J B, Chen X P 2022 IEEE T. Electron Dev. 69 1155Google Scholar

    [22]

    Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z, Tang W 2018 Carbon 129 738Google Scholar

    [23]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 15901Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Vydrov O A, Heyd J, Krukau A V, Scuseria G E 2006 J. Chem. Phys. 125 74106Google Scholar

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [27]

    Chen H L, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [28]

    Tan X Y, Liu L L, Ren D H 2020 Chin. Phys. B 29 76102Google Scholar

    [29]

    Jelver L, Larsen P M, Stradi D, Stokbro K, Jacobsen K W 2017 Phys. Rev. B 96 085306Google Scholar

    [30]

    Deng S, Zhang Y, Li L 2019 Appl. Surf. Sci. 476 308Google Scholar

    [31]

    Wang F F, Yuan J, Zhang Z F, Ding X L, Gu C J, Yan S B, Sun J H, Jiang T, Wu Y F, Zhou J 2023 Phys. Rev. B 108 075416Google Scholar

    [32]

    Jiang X X, Xie W L, Xu X H, Gao Q, Li D M, Cui B, Liu D S, Qu F Y 2022 Nanoscale 14 7292Google Scholar

    [33]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [34]

    Mao Y L, Qin C Q, Wang J, Yuan J M 2022 Phys. Chem. Chem. Phys. 24 16058Google Scholar

    [35]

    Ahammed R, Rawat A, Jena N, Dimple, Mohanta M K, Sarkar A D 2020 Appl. Surf. Sci. 499 143894Google Scholar

    [36]

    Lv X S, Wei W, Mu C, Huang B B, Dai Y 2018 J. Mater. Chem. A 6 5032Google Scholar

    [37]

    Lin P, Xu N S, Tan X L, Yang X H, Xiong R, Wen C L, Wu B, Lin Q L, Sa B S 2022 RSC Adv. 12 998Google Scholar

    [38]

    Shi L, Xu W P, Qiu X, Xiao X L, Wei H R, Duan Y H, Wang R, Fan J, Wu X Z 2023 Appl. Phy. Lett. 123 131102Google Scholar

    [39]

    Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar

    [40]

    Wang Y Q, Zhang R R, Li J B, Li L L, Lin S W 2014 Nanoscale Res. Lett. 9 46Google Scholar

    [41]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [42]

    Zhao Z, Yang C, Cao Z, Bian Y, Li B, Wei Y 2022 Spectrochim. Acta Part A. 278 121359Google Scholar

    [43]

    Zhang W X, Hou J T, Bai M, He C, Wen J R 2023 Chin. Chem. Lett. 34 108270Google Scholar

    [44]

    Luo Y, Ren K, Wang S K, Chou J P, Yu J, Sun Z M, Sun M L 2019 J. Phys. Chem. C 123 22742Google Scholar

    [45]

    Sutter P, Ibragimova R, Komsa H P, Parkinson B A, Sutter E 2019 Nat. Commun. 10 5528Google Scholar

    [46]

    Yuan L, Zheng B Y, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S B, Blach D, Pan A L, Huang L B 2020 Nat. Mater. 19 617Google Scholar

    [47]

    Molaei M J, Younas M, Rezakazemi M 2022 Mater. Sci. Eng. B 285 115936Google Scholar

  • 图 1  (a) Sb单层和(b) SnC单层的俯视图和侧视图; (c) Sb单层和(d) SnC单层的能带结构

    Fig. 1.  Top view and side view of (a) Sb and (b) SnC monolayer; band structure of (c) SnC and (d) Sb monolayer.

    图 2  不同层间转角的Sb/SnC异质结的俯视图和侧视图 (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°

    Fig. 2.  Top view and side view of Sb/SnC vdWHs with different interlayer rotation angle: (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°.

    图 3  不同层间转角的Sb/SnC异质结的能带结构 (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°

    Fig. 3.  Band structures of Sb/SnC vdWHs with different interlayer rotation angle: (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°.

    图 4  不同层间转角的Sb/SnC异质结的轨道投影态密度 (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°

    Fig. 4.  Orbital projected density of state of Sb/SnC vdWHs with different interlayer rotation angle: (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°.

    图 5  Sb单层、SnC单层和Sb/SnC异质结的(a)面内和(b)面外方向的光吸收系数

    Fig. 5.  Absorption coefficients of Sb monolayer, SnC monolayer, Sb/SnC vdWHs in the (a) in-plane and (b) out-of-plane directions.

    图 6  Sb, SnC及Sb/SnC异质结的价带顶和导带底的电位. 绿色(紫色)实线和虚线分别表示pH为0(2)时, 水分解的标准氧化电位和还原电位

    Fig. 6.  Potential of valence band maximum and conduction band minimum of Sb, SnC, and Sb/SnC vdWH. The green (purple) solid line and dashed line represent the standard oxidation potential and reduction potential of water decomposition at a pH of 0(2), respectively.

    表 1  六种层间转角的Sb/SnC异质结的结构信息

    Table 1.  Structure information of Sb/SnC vdWH with six interlayer rotation angles.

    旋转角 8.95° 10.89° 13.59° 19.11° 23.41° 30°
    Sb超胞 $ 5\times 5 $ $ 4\times 4 $ $ \sqrt{13}\times \sqrt{13} $ $ \sqrt{7}\times \sqrt{7} $ $ \sqrt{19}\times \sqrt{19} $ $ \sqrt{3}\times \sqrt{3} $
    SnC超胞 $ \sqrt{31}\times \sqrt{31} $ $ \sqrt{21}\times \sqrt{21} $ $ 4\times 4 $ $ 3\times 3 $ $ 5\times 5 $ $ 2\times 2 $
    原子数 112 74 58 32 88 14
    应变 0.99% 0.91% 1.2% 0.23% 0.99% 1.4%
    层间距/Å 3.2 3.26 3.46 3.41 3.31 3.38
    Eb/meV –79.4 –80.6 –76.6 –80.0 –79.3 –80.2
    下载: 导出CSV

    表 2  多种二维范德瓦耳斯异质结的光电转换效率

    Table 2.  Power conversion efficiency of some 2D van der Waals heterostructures.

    2D vdWHs PCE/% Ref.
    AsP/CdSe 13 [34]
    ZrS3/MoSeTe 16 [35]
    Sb/InSe 17.2 [21]
    g-C3N4/WTe2 17.68 [36]
    GeSe/SnS 18 [37]
    Sb/SnC (θ = 8.95°) 17.48 This work
    Sb/SnC (θ = 13.59°) 18.59 This work
    下载: 导出CSV

    表 3  多种II型范德瓦耳斯异质结的带隙以及在红外和可见光区的吸收系数最大值

    Table 3.  Band gap and the maximum absorption coefficients in infrared and visible region of some type-II van der Waals heterostructures.

    带隙/eV 吸收系数 Ref.
    ZnO/Blue P 1.83 2×104 [42]
    PG/AlAs5 2.13 2.2×104 [43]
    MoS2/BSe 1.80 1.6×105 [44]
    WS2/BSe 2.14 2×105 [44]
    Sb/SnC (θ = 8.95°) 1.44 3×105 This work
    Sb/SnC (θ = 13.59°) 1.34 3×105 This work
    下载: 导出CSV
  • [1]

    Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [2]

    Carr S, Massatt D, Fang S A, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [3]

    Carr S, Fang S A, Kaxiras E 2020 Nat. Rev. Mater. 5 748Google Scholar

    [4]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [5]

    Ren Y N, Zhang Y, Liu Y W, He L 2020 Chin. Phys. B 29 117303Google Scholar

    [6]

    Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [7]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [8]

    Ninno G De, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nat. Photon. 14 554Google Scholar

    [9]

    Tebyetekerwa M, Truong T N, Yan W, Tang C, Wibowo A A, Bullock J, Du A, Yan C, Macdonald D, Nguyen H T 2022 Adv. Mat. Inter. 9 2201649Google Scholar

    [10]

    Liu B Y, Zhang Y T, Qiao R X, Shi R C, Li Y H, Guo Q L, Li J D, Li X M, Wang L, Qi J J, Du S X, Ren X G, Liu K H, Gao P, Zhang Y Y 2023 Phys. Rev. Lett. 131 016201Google Scholar

    [11]

    Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L, Feldman B E 2024 Science 384 343Google Scholar

    [12]

    Hidalgo F, Sánchez-Ochoa F, Noguez C 2023 npj 2D Mater. Appl. 7 40Google Scholar

    [13]

    Fadaie M, Shahtahmassebi N, Roknabad M R, Gulseren O 2017 Comput. Mater. Sci. 137 208Google Scholar

    [14]

    Dai Z N, Cao Y, Yin W J, Sheng W, Xu Y 2022 J. Phys. D: Appl. Phys. 55 315503Google Scholar

    [15]

    Jiang X X, Gao Q, Xu X H, Xu G, Li D M, Cui B, Liu D S, Qu F Y 2021 Phys. Chem. Chem. Phys. 23 21641Google Scholar

    [16]

    Niu T C, Meng Q L, Zhou D C, Si N, Zhai S W, Hao X M, Zhou M, Fuchs H 2020 Adv. Mater. 32 1906873Google Scholar

    [17]

    Sun S, Yang T, Luo Y Z, Gou J, Huang Y L, Gu C D, Ma Z R, Lian X, Duan S S, Wee A T S, Lai M, Zhang J L, Feng Y P, Chen W 2020 J. Phys. Chem. Lett. 11 8976Google Scholar

    [18]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. Engl. 54 3112Google Scholar

    [19]

    Singh D, Gupta S K, Sonvane Y, Lukačević I 2016 J. Mater. Chem. C 4 6386Google Scholar

    [20]

    Shakil M, Rehman A, Nabi G, Tanveer M, Gillani S, Al-Buriahi M S, Tamam N, Alrowaili Z A 2023 Physica B: Condens. Matter 670 415389Google Scholar

    [21]

    Zheng K, Cui H P, Yu J B, Chen X P 2022 IEEE T. Electron Dev. 69 1155Google Scholar

    [22]

    Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z, Tang W 2018 Carbon 129 738Google Scholar

    [23]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 15901Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Vydrov O A, Heyd J, Krukau A V, Scuseria G E 2006 J. Chem. Phys. 125 74106Google Scholar

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [27]

    Chen H L, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [28]

    Tan X Y, Liu L L, Ren D H 2020 Chin. Phys. B 29 76102Google Scholar

    [29]

    Jelver L, Larsen P M, Stradi D, Stokbro K, Jacobsen K W 2017 Phys. Rev. B 96 085306Google Scholar

    [30]

    Deng S, Zhang Y, Li L 2019 Appl. Surf. Sci. 476 308Google Scholar

    [31]

    Wang F F, Yuan J, Zhang Z F, Ding X L, Gu C J, Yan S B, Sun J H, Jiang T, Wu Y F, Zhou J 2023 Phys. Rev. B 108 075416Google Scholar

    [32]

    Jiang X X, Xie W L, Xu X H, Gao Q, Li D M, Cui B, Liu D S, Qu F Y 2022 Nanoscale 14 7292Google Scholar

    [33]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [34]

    Mao Y L, Qin C Q, Wang J, Yuan J M 2022 Phys. Chem. Chem. Phys. 24 16058Google Scholar

    [35]

    Ahammed R, Rawat A, Jena N, Dimple, Mohanta M K, Sarkar A D 2020 Appl. Surf. Sci. 499 143894Google Scholar

    [36]

    Lv X S, Wei W, Mu C, Huang B B, Dai Y 2018 J. Mater. Chem. A 6 5032Google Scholar

    [37]

    Lin P, Xu N S, Tan X L, Yang X H, Xiong R, Wen C L, Wu B, Lin Q L, Sa B S 2022 RSC Adv. 12 998Google Scholar

    [38]

    Shi L, Xu W P, Qiu X, Xiao X L, Wei H R, Duan Y H, Wang R, Fan J, Wu X Z 2023 Appl. Phy. Lett. 123 131102Google Scholar

    [39]

    Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar

    [40]

    Wang Y Q, Zhang R R, Li J B, Li L L, Lin S W 2014 Nanoscale Res. Lett. 9 46Google Scholar

    [41]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [42]

    Zhao Z, Yang C, Cao Z, Bian Y, Li B, Wei Y 2022 Spectrochim. Acta Part A. 278 121359Google Scholar

    [43]

    Zhang W X, Hou J T, Bai M, He C, Wen J R 2023 Chin. Chem. Lett. 34 108270Google Scholar

    [44]

    Luo Y, Ren K, Wang S K, Chou J P, Yu J, Sun Z M, Sun M L 2019 J. Phys. Chem. C 123 22742Google Scholar

    [45]

    Sutter P, Ibragimova R, Komsa H P, Parkinson B A, Sutter E 2019 Nat. Commun. 10 5528Google Scholar

    [46]

    Yuan L, Zheng B Y, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S B, Blach D, Pan A L, Huang L B 2020 Nat. Mater. 19 617Google Scholar

    [47]

    Molaei M J, Younas M, Rezakazemi M 2022 Mater. Sci. Eng. B 285 115936Google Scholar

  • [1] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋. 基于第一性原理研究杂质补偿对硅光电性能的影响. 物理学报, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [3] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [4] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [5] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响. 物理学报, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [6] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [7] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [8] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [9] 姜程鑫, 陈令修, 王慧山, 王秀君, 陈晨, 王浩敏, 谢晓明. 六方氮化硼层间气泡制备与压强研究. 物理学报, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [10] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [11] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [12] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [13] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [14] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [15] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [16] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [17] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [18] 余志强. 硅基外延OsSi2电子结构及光电特性研究. 物理学报, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [19] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [20] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
计量
  • 文章访问数:  803
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2024-09-20
  • 上网日期:  2024-10-28
  • 刊出日期:  2024-11-20

/

返回文章
返回