搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展

刘鑫 汶伟强 李冀光 魏宝仁 肖君

引用本文:
Citation:

高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展

刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君
cstr: 32037.14.aps.73.20241190

Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions

Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun
cstr: 32037.14.aps.73.20241190
PDF
HTML
导出引用
  • 高电荷态离子(highly charged ion, HCI)的精细结构及辐射跃迁性质的精确测量不仅可以检验基本物理模型, 包括: 强场量子电动力学(quantum electrodynamics, QED)效应、电子关联效应、相对论效应、原子核效应等, 而且能够为天体物理和聚变等离子体物理提供关键原子物理参数. 相对于研究较多的类氢和类锂离子体系, 类硼离子的精细结构禁戒跃迁的相对论效应和QED效应的贡献很大, 高精度实验测量与理论计算为进一步检验多电子体系的基本物理模型提供了重要途径. 此外, 类硼离子也被认为是最佳的高电荷态离子光钟候选体系. 本文主要介绍了类硼离子基态2P3/22P1/2跃迁的实验和理论研究最新进展, 概述了其精细结构和超精细结构的研究现状, 并讨论了使用电子束离子阱结合高分辨光谱学实验技术开展类硼离子超精细分裂实验测量的方案, 为未来开展类硼离子超精细分裂实验研究并在更高精度上检验QED效应, 提取原子核磁化分布半径, 检验相关的核结构模型等研究提供了参考.
    The precise measurement of the fine structure and radiative transition properties of highly charged ions (HCI) is essential for testing fundamental physical models, including strong-field quantum electrodynamics (QED) effects, electron correlation effects, relativistic effects, and nuclear effects. These measurements also provide critical atomic physics parameters for astrophysics and fusion plasma physics. Compared with the extensively studied hydrogen-like and lithium-like ion systems, boron-like ions exhibit significant contributions in terms of relativistic and QED effects in their fine structure forbidden transitions. High-precision experimental measurements and theoretical calculations of these systems provide important avenues for further testing fundamental physical models in multi-electron systems. Additionally, boron-like ions are considered promising candidates for HCI optical clocks. This paper presents the latest advancements in experimental and theoretical research on the ground state 2P3/22P1/2 transition in boron-like ions, and summarizes the current understanding of their fine and hyperfine structures. It also discusses a proposed experimental setup for measuring the hyperfine splitting of boron-like ions by using an electron beam ion trap combined with high-resolution spectroscopy. This proposal aims to provide a reference for future experimental research on the hyperfine splitting of boron-like ions, to test the QED effects with higher precision, extract the radius of nuclear magnetization distribution, and validate relevant nuclear structure models.
      通信作者: 肖君, xiao_jun@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602504)和国家自然科学基金(批准号: 12374228, 12393824, 12474250)资助的课题.
      Corresponding author: Xiao Jun, xiao_jun@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602504) and the National Natural Science Foundation of China (Grant Nos. 12374228, 12393824, 12474250).
    [1]

    Beyer H F, Shevelko V P 2003 Introduction to the Physics of Highly Charged Ions (Institute of Physics Publishing, wholly owned by The Institute of Physics, London: IOP Publishing Ltd

    [2]

    Indelicato P 2019 J. Phys. B: At. , Mol. Opt. Phys. 52 232001Google Scholar

    [3]

    Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar

    [4]

    Fawcett B C, Gabriel A H, Paget T M 1971 J. Phys. B: At. , Mol. Opt. Phys. 4 986Google Scholar

    [5]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 Astron. Astrophys. 365 L329Google Scholar

    [6]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [7]

    Flower D, Nussbaumer H 1975 Astron. Astrophys. 45 349

    [8]

    Sugar J, Kaufman V, Cooper D 1982 Phys. Scr. 26 293Google Scholar

    [9]

    Wang W, Liu X W, Zhang Y, Barlow M 2004 Astron. Astrophys. 427 873Google Scholar

    [10]

    Stencel R E, Linsky J L, Brown A, Jordan C, Carpenter K G, Wing R F, Czyzak S 1981 Mon. Not. R. Astron. Soc. 196 47PGoogle Scholar

    [11]

    Brekke P, Kjeldseth-Moe O, Bartoe J D F, Brueckner G E 1991 Astrophys. J. Suppl. Ser. 75 1337Google Scholar

    [12]

    King S A, Spieß L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C, Schmidt P O 2022 Nature 611 43Google Scholar

    [13]

    Kozlov M G, Safronova M S, López-Urrutia J R C, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [14]

    Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [15]

    Edlén B 1943 Z. Astrophys. 22 30

    [16]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [17]

    Draganič I, López-Urrutia J R C, DuBois R, Fritzsche S, Shabaev V M, Orts R S, Tupitsyn I I, Zou Y, Ullrich J 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [18]

    Orts R S, Harman Z, Crespo López-Urrutia J R, Artemyev A N, Bruhns H, Martínez A J G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, Shabaev V M, Tawara H, Tupitsyn I I, Ullrich J, Volotka A V 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [19]

    Mackel V, Klawitter R, Brenner G, López-Urrutia J R C, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [20]

    Micke P, Leopold T, King S A, Benkler E, Spieß L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R, Schmidt P O 2020 Nature 578 60Google Scholar

    [21]

    Klaft I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kühl T, Marx D, Neumann R, Schröder S, Seelig P, Völker L 1994 Phys. Rev. Lett. 73 2425Google Scholar

    [22]

    Lochmann M, Jöhren R, Geppert C, Andelkovic Z, Anielski D, Botermann B, Bussmann M, Dax A, Frömmgen N, Hammen M, Hannen V, Kühl T, Litvinov Y A, López-Coto R, Stöhlker T, Thompson R C, Vollbrecht J, Volotka A, Weinheimer C, Wen W, Will E, Danyal Winters, Sánchez R, Nörtershäuser W 2014 Phys. Rev. A 90 030501(RGoogle Scholar

    [23]

    Ullmann J, Andelkovic Z, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y, Lochmann M, Maass B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2015 J. Phys. B: At. , Mol. Opt. Phys. 48 144022Google Scholar

    [24]

    Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht o, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar

    [25]

    Crespo López-Urrutia J R, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826Google Scholar

    [26]

    Crespo López-Urrutia J R, Beiersdorfer P, Widmann K, Birkett B B, Mårtensson-Pendrill A M, Gustavsson M G H 1998 Phys. Rev. A 57 879Google Scholar

    [27]

    Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar

    [28]

    Beiersdorfer P, Utter S B, Wong K L, López-Urrutia J R C, Britten J A, Chen H, Harris C L, Thoe R S, Thorn D B, Träbert E, Gustavsson M G H, Forssén C, Mårtensson-Pendrill A M 2001 Phys. Rev. A 64 032506Google Scholar

    [29]

    Beiersdorfer P, Osterheld A L, Scofield J H, J. R. Crespo López-Urrutia, Widmann K 1998 Phys. Rev. Lett. 80 3022Google Scholar

    [30]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001Google Scholar

    [31]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [32]

    Shabaev V M, Shabaeva M B, Tupitsyn I I 1995 Phys. Rev. A 52 3686Google Scholar

    [33]

    Shabaev V M, Artemyev A N, Yerokhin V A, Zherebtsov O M, Soff G 2001 Phys. Rev. Lett. 86 3959Google Scholar

    [34]

    Volotka A V, Glazov D A, Andreev O V, Shabaev V M, Tupitsyn I I, Plunien G 2012 Phys. Rev. Lett. 108 073001Google Scholar

    [35]

    Karr J P 2017 Nat. Phys. 13 533Google Scholar

    [36]

    Nörtershäuser W, Ullmann J, Skripnikov L V, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Kraus F, Kresse B, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Privalov A F, Sánchez R, Scheibe B, Schmidt M, Schmidt S, Shabaev V M, Steck M, Stöhlker T, Thompson R C, Trageser C, Vogel M, Vollbrecht J, Volotka A V, Weinheimer C 2019 Hyperfine Interact. 240 51Google Scholar

    [37]

    Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nörtershäuser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M, Volotka A V 2018 Phys. Rev. Lett. 120 093001Google Scholar

    [38]

    Volotka A V, Glazov D A, Tupitsyn I I, Oreshkina N S, Plunien G, Shabaev V M 2008 Phys. Rev. A 78 062507Google Scholar

    [39]

    Glazov D A, Volotka A V, Andreev O V, Kosheleva V P, Fritzsche S, Shabaev V M, Plunien G, Stöhlker T 2019 Phys. Rev. A 99 062503Google Scholar

    [40]

    Verdebout S, Nazé C, Jönsson P, Rynkun P, Godefroid M, Gaigalas G 2014 At. Data Nucl. Data Tables 100 1111Google Scholar

    [41]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111Google Scholar

    [42]

    Verhey T R, Das B P, Perger W F 1987 J. Phys. B: At. Mol. Opt. Phys. 20 3639Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Charro E, López-Ferrero S, Martín I 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4243Google Scholar

    [45]

    Tupitsyn I I, Volotka A V, Glazov D A, Shabaev V M, Plunien G, Crespo López-Urrutia J R, Lapierre A, Ullrich J 2005 Phys. Rev. A 72 062503Google Scholar

    [46]

    Koc K 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 235 46Google Scholar

    [47]

    Volotka A, Glazov D, Plunien G, Shabaev V, Tupitsyn I 2006 Eur. Phys. J. D 38 293Google Scholar

    [48]

    Koc K 2009 Eur. Phys. J. D 53 9Google Scholar

    [49]

    Rynkun P, Jönsson P, Gaigalas G, Fischer C F 2012 At. Data Nucl. Data Tables 98 481Google Scholar

    [50]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [51]

    Fischer C F, Grant I P, Gaigalas G, Rynkun P 2016 Phys. Rev. A 93 022505Google Scholar

    [52]

    Malyshev A V, Glazov D A, Volotka A V, Tupitsyn I I, Shabaev V M, Plunien G, Stöhlker T 2017 Phys. Rev. A 96 022512Google Scholar

    [53]

    Bilal M, Volotka A V, Beerwerth R, Fritzsche S 2018 Phys. Rev. A 97 052506Google Scholar

    [54]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [55]

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Volotka A V, Kozhedub Y S, Kaygorodov M Y, Huang Z K, Ma W L, Wang S X, Ma X 2021 Phys. Rev. A 104 062804Google Scholar

    [56]

    Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar

    [57]

    Shabaev V M 1994 J. Phys. B: At. , Mol. Opt. Phys. 27 5825Google Scholar

    [58]

    Brandau C, Kozhuharov C, Muller A, Shi W, Schippers S, Bartsch T, Bohm S, Bohme C, Hoffknecht A, Knopp H, Grun N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stohlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [59]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2000 Phys. Rev. Lett. 86 5027Google Scholar

    [60]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808Google Scholar

    [61]

    Brandau C, Kozhuharov C (Shevelko V, Tawara H Ed.) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer Berlin Heidelberg) pp283–306

    [62]

    Huang Z K, Wen W Q, X. Xu c H B W, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 408 135Google Scholar

    [63]

    Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 169Google Scholar

    [64]

    Krantz C, Orlov D A, Bernhardt D, Brandau C, Hoffmann J, Müller A, Ricsoka T, Ricz S, Schippers S, Wolf A 2009 J. Phys. Conf. Ser. 163 012059Google Scholar

    [65]

    Trabert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2002 Phys. Rev. A 66 052507Google Scholar

    [66]

    Träbert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 205 83Google Scholar

    [67]

    Träbert E, Gwinner G, Wolf A, Tordoir X, Calamai A G 1999 Phys. Lett. A 264 311Google Scholar

    [68]

    刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu GQ, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar

    [69]

    Beiersdorfer P, Cauble R, Chantrenne S, Chen M, Knapp D, Marrs R, Phillips T, Reed K, Schneider M, Scofield J, Wong K, Vogel D, Zasadzinski R, Wargelin B, Bitter M, Goeler S V 1991 Electron-Ion Interaction Cross Sections Determined by X-ray Spectroscopy on EBIT

    [70]

    Silver E, Schnopper H, Bandler S, Brickhouse N, Murray S, Barbera M, Takacs E, Gillaspy J D, Porto J V, Kink I 2000 Astrophys. J. 541 495Google Scholar

    [71]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Phys. Rev. A 100 052508Google Scholar

    [72]

    Lu D, Yang Y, Xiao J, Shen Y, Fu Y, Wei B, Yao K, Hutton R, Zou Y 2014 Rev. Sci. Instrum. 85 093301Google Scholar

    [73]

    Xiao J, Fei Z, Yang Y, Jin X, Lu D, Shen Y, Liljeby L, Hutton R, Zou Y 2012 Rev. Sci. Instrum. 83 013303Google Scholar

    [74]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference (IPAC2013) Shanghai, China, May 12–17, 2013 pp 434–436

    [75]

    Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar

    [76]

    Shaolong Chen, Zhiqiang Zhou, Jiguang Li, Tingxian Zhang, Chengbin Li, Tingyun Shi, Yao Huang, Kelin Gao, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [77]

    Liang S, Lu Q, Wang X, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S, Zhou P, Sun W, Zhang Y, Huang Y, Guan H, Tong X, Li C, Zou Y, Shi T, Gao K 2019 Rev. Sci. Instrum. 90 093301Google Scholar

    [78]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 460 224Google Scholar

    [79]

    Morton A L, Marrs R E, Henderson J R, Knapp D A, Marilyn B S 1988 Phys. Scr. 1988 157Google Scholar

    [80]

    Beiersdorfer P, Britten J A, Brown G V, Chen H, Clothiaux E J, Cottam J, Förster E, Gu M F, Harris C L, Kahn S M, Lepson J K, Neill P A, Savin D W, Schulte-Schrepping H, Schweikhard L, Smith A J, Träbert E, Tschischgale J, Utter S B, Wong K L 2001 Phys. Scr. 2001 268Google Scholar

    [81]

    Morgan C A, Serpa F G, Takács E, Meyer E S, Gillaspy J D, Sugar J, Roberts J R, Brown C M, Feldman U 1995 Phys. Rev. Lett. 74 1716Google Scholar

    [82]

    Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072Google Scholar

    [83]

    Christoph B, Andreas F, Gerd F, Rainer R 1997 Phys. Scr. 1997 360Google Scholar

    [84]

    Currell F J, Asada J, Ishii K, Minoh A, Motohashi K, Nakamura N, Nishizawa K, Ohtani S, Okazaki K, Sakurai M, Shiraishi H, Tsurubuchi S, Watanabe H 1996 J. Phys. Soc. Jpn. 65 3186Google Scholar

    [85]

    López-Urrutia J R C, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. 1999 502Google Scholar

    [86]

    Mianhong H, Yong L, Yang Y, Shimin W, Weidong C, Wei H, Panlin G, Di L, Yunqing F, Min H, Xuemei Z, Roger H, Leif L, Yaming Z 2007 J. Phys. Conf. Ser. 58 419Google Scholar

    [87]

    Schuch R, Tashenov S, Orban I, Hobein M, Mahmood S, Kamalou O, Akram N, Safdar A, Skog P, Solders A, Zhang H 2010 J. Instrum. 5 C12018Google Scholar

    [88]

    Dilling J, Baartman R, Bricault P, Brodeur M, Blomeley L, Buchinger F, Crawford J, Crespo López-Urrutia J R, Delheij P, Froese M, Gwinner G P, Ke Z, Lee J K P, Moore R B, Ryjkov V, Sikler G, Smith M, Ullrich J, Vaz J 2006 Int. J. Mass Spectrom. 251 198Google Scholar

    [89]

    Nakamura N, Kikuchi H, Sakaue H A, Watanabe T 2008 Rev. Sci. Instrum. 79 063104Google Scholar

    [90]

    Micke P, Kühn S, Buchauer L, Harries J R, Bücking T M, Blaum K, Cieluch A, Egl A, D. Hollain, Kraemer S, Pfeifer T, Schmidt P O, Schüssler R X, Schweiger C, Stöhlker T, Sturm S, Wolf R N, Bernitt S, López-Urrutia J R C 2018 Rev. Sci. Instrum. 89 063109Google Scholar

    [91]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [92]

    Lapierre A, López-Urrutia J R C, Braun J, Brenner G, Bruhns H, Fischer D, Martínez A J G, V. Mironov C O, Sikler G, Orts R S, Tawara H, Ullrich J, V. M. Shabaev, Tupitsyn I I, Volotka A 2006 Phys. Rev. A 73 052507Google Scholar

    [93]

    Mäckel V 2010 (der Ruprecht-Karls-Universität Heidelberg

    [94]

    Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O, López-Urrutia J R C 2015 Science 347 1233Google Scholar

    [95]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [96]

    Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C, Stöhlker T 2016 Phys. Rev. A 93 052502Google Scholar

    [97]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

  • 图 1  类硼离子结构示意图(以核自旋为1/2的类硼离子为例)

    Fig. 1.  Schematic structure of boron like ions (Take the example of a boron like ion with a nuclear spin of 1/2).

    图 2  (a) 通过QED从头计算的类硼离子2P3/22P1/2禁戒跃迁能量的结果与实验结果和MCDF计算结果的对比(QED从头计算[50]; MCDF[54]; 实验结果[6,12,55,56]); (b) Z < 45的放大图

    Fig. 2.  (a) Comparison of the results of the forbidden transition energies of the boron-like ions 2P3/22P1/2 calculated by ab initio with experimental and MCDF calculations results (ab initio[50]; MCDF[54]; experimental results[6,12,55,56]); (b) enlarged view of Z < 45.

    图 3  兰州重离子储存环示意图, 包括ECR离子源、扇聚焦回旋加速器(SFC)、大型分离扇回旋加速器(SSC)、SSC直线注入器(SSC Linac)、冷却储存环主环(CSRm)和实验环(CSRe)[62]

    Fig. 3.  Schematic diagram of the heavy ion storage ring in Lanzhou, includes the ECR ion source, the sector focusing cyclotron (SFC), the large separating sector cyclotron (SSC), the SSC linear injector (SSC Linac), the CSRm and the CSRe[62].

    图 4  电子束离子阱EBIT的原理结构图以及其中发生的一些原子物理过程[68]

    Fig. 4.  Schematic diagram of the principle structure of an electron beam ion trap and some atomic processes occurring within[68].

    图 5  (a) 德国马克斯-普朗克研究所的激光精密谱学实验装置[93]. 蓝色激光束通过反射镜从EBIT的收集极进入EBIT的中心漂移管, 与高电荷态离子相互作用; (b) Ar13+离子的激光结合精密谱学实验原理图[19]

    Fig. 5.  (a) Laser Precision Spectroscopy Experimental Setup in Max Planck Institute of Germany[93]. The blue laser beam passes through a reflector from the collection pole of the EBIT into the central drift tube of the EBIT, where it interacts with highly charged state ions; (b) principle Diagram of Laser-Combined Precision Spectroscopy Experiment for Ar13+ ion[19].

    图 6  (a) 实验装置示意图, 包括一个作为 HCI 生产场所的 EBIT、一条用于减速和减少 HCI 串能量扩散的光束线、一个具有外部离子注入功能的低温保罗阱(用于存储 HCI 并将其协同冷却至毫开尔文状态)以及一个用于在313 nm处对Be+冷却剂离子进行激光诱导荧光检测的成像系统[94]; (b) 离子引出过程中漂移管电压变化示意图[94]

    Fig. 6.  (a) Illustration of experimental setup consisting of an EBIT as HCI production site, a beamline for deceleration and reduction of energy spread of HCI bunches, a cryogenic Paul trap with external ion injection capabilities for HCI storage and sympathetic cooling to the millikelvin regime, and an imaging system for laser-induced fluorescence detection of the Be+ coolant ions at 313 nm[94]; (b) schematic of the drift tube voltage change during ion elicitation[94].

    图 7  制备双离子晶体的时间序列, 从上到下依次为, 由 50—100 个荧光 9Be+ 离子组成的激光冷却库仑晶体被限制在保罗阱中. 单个Ar13+离子沿晶体轴线注入, 共冷却, 最后与9Be+共晶体化. 由于高电荷状态对9Be+的排斥作用, 它呈现为一个巨大的暗空洞. 在没有激光冷却的情况下, 多余的9Be+离子通过调节Paul阱射频电势, 从而减少多余的离子. 最后, 制备出Ar13+-9Be+双离子晶体[20]

    Fig. 7.  Time sequence of HCI recapture and two-ion crystal preparation. In order from top to bottom, a laser-cooled Coulomb crystal of 50–100 fluorescing 9Be+ ions is confined in the Paul trap. A single Ar13+ ion is injected along the crystal axis, sympathetically cooled and finally co-crystallized with 9Be+. It appears as a large dark void owing to the repulsion of the 9Be+ by the high charge state. Excess 9Be+ ions are removed by modulating the Paul trap radio-frequency potential in the absence of laser cooling, resulting in heating and ion losses. Finally, the Ar13+-9Be+ two-ion crystal is prepared[20].

    图 8  两个时钟激光器(Ar13+171Yb+)分别锁定在自己的本地腔体和频率梳上进行预稳定, 并通过数字控制环路最终转向相应的光学转换. 两个频率梳锁定在异常稳定的低温硅腔上. 通过这种方法, 每个光频梳可以获得其时钟激光器与稳定激光器之间的频率比[12]

    Fig. 8.  Each of the two clock lasers (Ar13+ and 171Yb+) is locked for pre-stabilization to its own local cavity and frequency comb, and ultimately steered to the corresponding optical transition by a digital control loop. The two frequency combs are locked to the exceptionally stable cryogenic silicon cavity Si2. This method yields for each comb the frequency ratio between its clock laser and the Si2-stabilized laser. The dedicated laboratories are linked through phase-stabilized optical fibres[12].

    图 9  类硼离子16≤Z≤29的计算结果与实验测量结果的比较[55], 图中0处的黑色基线表示Edlén[6]与自己结果的$ \Delta E $, 蓝色表示QED从头计算[50]理论计算结果与Edlén[6]的$ \Delta E $, 红色表示Liu等[55]的实验测量结果与Edlén[6]的$ \Delta E $, 黑色表示Liu等[55]的理论计算结果与Edlén[6]的$ \Delta E $

    Fig. 9.  Comparison of calculated results with experimental measurements for the boron-like ions 16 ≤ Z ≤ 29[55], where the black baseline at 0 denotes the ∆E of Edlén[6] versus its own results, the blue box () denotes the ∆E of theoretical calculations of first principles[50] versus Edlén[6], the red circle () denotes the experimental measurements of Xin Liu et al.[55]experimental measurements with ∆E of Edlén[6], and black triangle () denotes the theoretical calculations of Xin Liu et al.[55] with ∆E of Edlén[6].

    图 10  部分适合光学波段测量的类硼离子基态超精细分裂模拟光谱图, 图中给出了模拟光谱的分辨率. 每条线代表F (2P2/3)→F' (2P1/2)跃迁线

    Fig. 10.  Simulation of the ground-state hyperfine splitting spectra of some boron-like ions, with the resolution of the corresponding simulated spectra shown. Each line represents the F (2P2/3)→F' (2P1/2) transition line.

    表 1  已有EBIT的主要参数

    Table 1.  Main parameters of available EBIT.

    名称 年份 国家 能量/keV 束流/mA/ 磁场/T 参考文献
    Super EBIT 1986 美国 10—200 150 3 [79]
    EBIT-II 1993 美国 30 200 3 [80]
    NIST EBIT 1993 美国 33 200 3 [81]
    Oxford EBIT 1993 英国 0.7—50 200 2.8 [82]
    Berlin EBIT 1997 德国 40 200 3 [83]
    Tokyo EBIT 1996 日本 180 330 5 [84]
    Heidelberg EBIT 2000 德国 100 535 8 [85]
    Shanghai EBIT 2005 中国 130 160 5 [86]
    Stockholm EBIT 2007 瑞典 27 150 3 [87]
    TITAN EBIT 2007 加拿大 27 500 [88]
    CoBIT 2008 日本 0.1—1 10 0.2 [89]
    SH-PermEBIT 2012 中国 0.06—5 10.2 0.48 [73]
    SH-HtscEBIT 2013 中国 0.03—4 10 0.25 [74]
    HC-EBIT 2018 德国 10 80 0.86 [90]
    SW-EBIT 2019 中国 0.03—4 9 0.21 [77]
    下载: 导出CSV

    表 2  目前已经报道的类硼离子基态精细结构分裂2P3/22P1/2实验测量结果, 其中括号中的数字表示跃迁能量的不确定度

    Table 2.  Experimental measurements of the boron-like ion ground-state fine-structure splitting 2P3/22P1/2 that have been reported so far, where the numbers in parentheses indicate the uncertainties in the transition energies.

    离子 跃迁能量/eV 参考文献 离子 跃迁能量/eV 参考文献
    N2+ 0.02157(13) [6] 40Ar13+ 2.8090135821306312(5) [12]
    O3+ 0.04786(13) [6] 36Ar13+ 2.8090058148895724(5) [12]
    F4+ 0.0924(4) [6] K14+ 3.5963(31) [6]
    Ne5+ 0.1623(5) [6] Ca15+ 4.5397(37) [6]
    Na6+ 0.2652(8) [6] Sc16+ 5.6583(4) [6]
    Mg7+ 0.4094(3) [6] Ti17+ 6.9732(4) [56]
    Al8+ 0.6063(13) [6] V18+ 8.5061(50) [6]
    Si9+ 0.8665(3) [6] Cr19+ 10.2815(17) [56]
    P10+ 1.202(2) [6] Mn20+ 12.3100(12) [6]
    S11+ 1.628860(6) [55] Fe21+ 14.6640(35) [56]
    Cl12+ 2.158835(10) [55] Ni23+ 20.3286(68) [56]
    Cu24+ 23.7154(93) [56]
    下载: 导出CSV

    表 3  已有的高电荷态离子的超精细分裂实验测量结果

    Table 3.  Existing experimental measurements of hyperfine splitting of highly charged ions.

    离子 精度 类型 年份 实验装置 跃迁能级 结果
    209Bi82+ 1.6×10–4 类氢 1994 ESR (1s1/2)F=4, 5 243.87(4) nm[21]
    165Ho66+ 2.6×10–4 类氢 1996 SuperEBIT (1s1/2) F=3, 4 572.61(15) nm[25]
    185Re74+
    187Re74+
    6.6×10–4 类氢 1998 SuperEBIT (1s1/2)F=2, 3 456.05(30) nm[26]
    451.69(30) nm[26]
    209Bi80+ 3.1×10–2 类锂 1998 SuperEBIT (1s22s1/2)F=4, 5 0.820(26) eV[29]
    207Pb81+ 1.9×10–4 类氢 1998 ESR (1s1/2)F=0, 1 1019.7(2) nm[27]
    203Tl80+ 8.9×10–5 类氢 2001 SuperEBIT (1s1/2)F=0, 1 385.822(30) nm[28]
    205Tl80+ 382.184(34) nm[28]
    Sc18+ 1.3×10–2 类锂 2008 ESR (1s22s1/2)F=3, 4 0.00620(8) eV[30]
    141Pr56+ 6.1×10–3 类锂 2014 SuperEBIT (1s22s1/2)F=2, 3 0.1965(12) eV[31]
    1.7×10–2 (1s22p1/2)F=2, 3 0.0640(11) eV[31]
    141Pr55+ 9.4×10–3 类铍 (1s22s1/22p1/2)F=5/2, 7/2 0.1494(14) eV[31]
    1.8×10–2 (1s22s1/22p1/2)F=3/2, 5/2 0.1033(19) eV[31]
    7.1×10–3 (1s22s1/22p1/2)F=3/2, 7/2 0.2531(18) eV[31]
    209Bi82+ 2.1×10–4 类氢 2014 ESR (1s1/2)F=4, 5 5.0863(11) eV[22]
    209Bi80+ 2.3×10–4 类锂 (1s22s1/2)F=4, 5 0.79750(18) eV[22]
    209Bi82+ 2.4×10–5 类氢 2015 ESR (1s1/2)F=4, 5 243.821(6) nm[23]
    209Bi82+ 1.7×10–5 类氢 2017 ESR (1s1/2)F=4, 5 243.8221(8)(43) nm[24]
    209Bi80+ 9.0×10–6 类锂 (1s22s1/2)F=4, 5 1554.377(4)(14) nm[24]
    下载: 导出CSV
  • [1]

    Beyer H F, Shevelko V P 2003 Introduction to the Physics of Highly Charged Ions (Institute of Physics Publishing, wholly owned by The Institute of Physics, London: IOP Publishing Ltd

    [2]

    Indelicato P 2019 J. Phys. B: At. , Mol. Opt. Phys. 52 232001Google Scholar

    [3]

    Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar

    [4]

    Fawcett B C, Gabriel A H, Paget T M 1971 J. Phys. B: At. , Mol. Opt. Phys. 4 986Google Scholar

    [5]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 Astron. Astrophys. 365 L329Google Scholar

    [6]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [7]

    Flower D, Nussbaumer H 1975 Astron. Astrophys. 45 349

    [8]

    Sugar J, Kaufman V, Cooper D 1982 Phys. Scr. 26 293Google Scholar

    [9]

    Wang W, Liu X W, Zhang Y, Barlow M 2004 Astron. Astrophys. 427 873Google Scholar

    [10]

    Stencel R E, Linsky J L, Brown A, Jordan C, Carpenter K G, Wing R F, Czyzak S 1981 Mon. Not. R. Astron. Soc. 196 47PGoogle Scholar

    [11]

    Brekke P, Kjeldseth-Moe O, Bartoe J D F, Brueckner G E 1991 Astrophys. J. Suppl. Ser. 75 1337Google Scholar

    [12]

    King S A, Spieß L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C, Schmidt P O 2022 Nature 611 43Google Scholar

    [13]

    Kozlov M G, Safronova M S, López-Urrutia J R C, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [14]

    Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [15]

    Edlén B 1943 Z. Astrophys. 22 30

    [16]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [17]

    Draganič I, López-Urrutia J R C, DuBois R, Fritzsche S, Shabaev V M, Orts R S, Tupitsyn I I, Zou Y, Ullrich J 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [18]

    Orts R S, Harman Z, Crespo López-Urrutia J R, Artemyev A N, Bruhns H, Martínez A J G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, Shabaev V M, Tawara H, Tupitsyn I I, Ullrich J, Volotka A V 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [19]

    Mackel V, Klawitter R, Brenner G, López-Urrutia J R C, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [20]

    Micke P, Leopold T, King S A, Benkler E, Spieß L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R, Schmidt P O 2020 Nature 578 60Google Scholar

    [21]

    Klaft I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kühl T, Marx D, Neumann R, Schröder S, Seelig P, Völker L 1994 Phys. Rev. Lett. 73 2425Google Scholar

    [22]

    Lochmann M, Jöhren R, Geppert C, Andelkovic Z, Anielski D, Botermann B, Bussmann M, Dax A, Frömmgen N, Hammen M, Hannen V, Kühl T, Litvinov Y A, López-Coto R, Stöhlker T, Thompson R C, Vollbrecht J, Volotka A, Weinheimer C, Wen W, Will E, Danyal Winters, Sánchez R, Nörtershäuser W 2014 Phys. Rev. A 90 030501(RGoogle Scholar

    [23]

    Ullmann J, Andelkovic Z, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y, Lochmann M, Maass B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2015 J. Phys. B: At. , Mol. Opt. Phys. 48 144022Google Scholar

    [24]

    Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht o, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar

    [25]

    Crespo López-Urrutia J R, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826Google Scholar

    [26]

    Crespo López-Urrutia J R, Beiersdorfer P, Widmann K, Birkett B B, Mårtensson-Pendrill A M, Gustavsson M G H 1998 Phys. Rev. A 57 879Google Scholar

    [27]

    Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar

    [28]

    Beiersdorfer P, Utter S B, Wong K L, López-Urrutia J R C, Britten J A, Chen H, Harris C L, Thoe R S, Thorn D B, Träbert E, Gustavsson M G H, Forssén C, Mårtensson-Pendrill A M 2001 Phys. Rev. A 64 032506Google Scholar

    [29]

    Beiersdorfer P, Osterheld A L, Scofield J H, J. R. Crespo López-Urrutia, Widmann K 1998 Phys. Rev. Lett. 80 3022Google Scholar

    [30]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001Google Scholar

    [31]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [32]

    Shabaev V M, Shabaeva M B, Tupitsyn I I 1995 Phys. Rev. A 52 3686Google Scholar

    [33]

    Shabaev V M, Artemyev A N, Yerokhin V A, Zherebtsov O M, Soff G 2001 Phys. Rev. Lett. 86 3959Google Scholar

    [34]

    Volotka A V, Glazov D A, Andreev O V, Shabaev V M, Tupitsyn I I, Plunien G 2012 Phys. Rev. Lett. 108 073001Google Scholar

    [35]

    Karr J P 2017 Nat. Phys. 13 533Google Scholar

    [36]

    Nörtershäuser W, Ullmann J, Skripnikov L V, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Kraus F, Kresse B, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Privalov A F, Sánchez R, Scheibe B, Schmidt M, Schmidt S, Shabaev V M, Steck M, Stöhlker T, Thompson R C, Trageser C, Vogel M, Vollbrecht J, Volotka A V, Weinheimer C 2019 Hyperfine Interact. 240 51Google Scholar

    [37]

    Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nörtershäuser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M, Volotka A V 2018 Phys. Rev. Lett. 120 093001Google Scholar

    [38]

    Volotka A V, Glazov D A, Tupitsyn I I, Oreshkina N S, Plunien G, Shabaev V M 2008 Phys. Rev. A 78 062507Google Scholar

    [39]

    Glazov D A, Volotka A V, Andreev O V, Kosheleva V P, Fritzsche S, Shabaev V M, Plunien G, Stöhlker T 2019 Phys. Rev. A 99 062503Google Scholar

    [40]

    Verdebout S, Nazé C, Jönsson P, Rynkun P, Godefroid M, Gaigalas G 2014 At. Data Nucl. Data Tables 100 1111Google Scholar

    [41]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111Google Scholar

    [42]

    Verhey T R, Das B P, Perger W F 1987 J. Phys. B: At. Mol. Opt. Phys. 20 3639Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Charro E, López-Ferrero S, Martín I 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4243Google Scholar

    [45]

    Tupitsyn I I, Volotka A V, Glazov D A, Shabaev V M, Plunien G, Crespo López-Urrutia J R, Lapierre A, Ullrich J 2005 Phys. Rev. A 72 062503Google Scholar

    [46]

    Koc K 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 235 46Google Scholar

    [47]

    Volotka A, Glazov D, Plunien G, Shabaev V, Tupitsyn I 2006 Eur. Phys. J. D 38 293Google Scholar

    [48]

    Koc K 2009 Eur. Phys. J. D 53 9Google Scholar

    [49]

    Rynkun P, Jönsson P, Gaigalas G, Fischer C F 2012 At. Data Nucl. Data Tables 98 481Google Scholar

    [50]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [51]

    Fischer C F, Grant I P, Gaigalas G, Rynkun P 2016 Phys. Rev. A 93 022505Google Scholar

    [52]

    Malyshev A V, Glazov D A, Volotka A V, Tupitsyn I I, Shabaev V M, Plunien G, Stöhlker T 2017 Phys. Rev. A 96 022512Google Scholar

    [53]

    Bilal M, Volotka A V, Beerwerth R, Fritzsche S 2018 Phys. Rev. A 97 052506Google Scholar

    [54]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [55]

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Volotka A V, Kozhedub Y S, Kaygorodov M Y, Huang Z K, Ma W L, Wang S X, Ma X 2021 Phys. Rev. A 104 062804Google Scholar

    [56]

    Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar

    [57]

    Shabaev V M 1994 J. Phys. B: At. , Mol. Opt. Phys. 27 5825Google Scholar

    [58]

    Brandau C, Kozhuharov C, Muller A, Shi W, Schippers S, Bartsch T, Bohm S, Bohme C, Hoffknecht A, Knopp H, Grun N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stohlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [59]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2000 Phys. Rev. Lett. 86 5027Google Scholar

    [60]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808Google Scholar

    [61]

    Brandau C, Kozhuharov C (Shevelko V, Tawara H Ed.) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer Berlin Heidelberg) pp283–306

    [62]

    Huang Z K, Wen W Q, X. Xu c H B W, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 408 135Google Scholar

    [63]

    Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 169Google Scholar

    [64]

    Krantz C, Orlov D A, Bernhardt D, Brandau C, Hoffmann J, Müller A, Ricsoka T, Ricz S, Schippers S, Wolf A 2009 J. Phys. Conf. Ser. 163 012059Google Scholar

    [65]

    Trabert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2002 Phys. Rev. A 66 052507Google Scholar

    [66]

    Träbert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 205 83Google Scholar

    [67]

    Träbert E, Gwinner G, Wolf A, Tordoir X, Calamai A G 1999 Phys. Lett. A 264 311Google Scholar

    [68]

    刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu GQ, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar

    [69]

    Beiersdorfer P, Cauble R, Chantrenne S, Chen M, Knapp D, Marrs R, Phillips T, Reed K, Schneider M, Scofield J, Wong K, Vogel D, Zasadzinski R, Wargelin B, Bitter M, Goeler S V 1991 Electron-Ion Interaction Cross Sections Determined by X-ray Spectroscopy on EBIT

    [70]

    Silver E, Schnopper H, Bandler S, Brickhouse N, Murray S, Barbera M, Takacs E, Gillaspy J D, Porto J V, Kink I 2000 Astrophys. J. 541 495Google Scholar

    [71]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Phys. Rev. A 100 052508Google Scholar

    [72]

    Lu D, Yang Y, Xiao J, Shen Y, Fu Y, Wei B, Yao K, Hutton R, Zou Y 2014 Rev. Sci. Instrum. 85 093301Google Scholar

    [73]

    Xiao J, Fei Z, Yang Y, Jin X, Lu D, Shen Y, Liljeby L, Hutton R, Zou Y 2012 Rev. Sci. Instrum. 83 013303Google Scholar

    [74]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference (IPAC2013) Shanghai, China, May 12–17, 2013 pp 434–436

    [75]

    Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar

    [76]

    Shaolong Chen, Zhiqiang Zhou, Jiguang Li, Tingxian Zhang, Chengbin Li, Tingyun Shi, Yao Huang, Kelin Gao, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [77]

    Liang S, Lu Q, Wang X, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S, Zhou P, Sun W, Zhang Y, Huang Y, Guan H, Tong X, Li C, Zou Y, Shi T, Gao K 2019 Rev. Sci. Instrum. 90 093301Google Scholar

    [78]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 460 224Google Scholar

    [79]

    Morton A L, Marrs R E, Henderson J R, Knapp D A, Marilyn B S 1988 Phys. Scr. 1988 157Google Scholar

    [80]

    Beiersdorfer P, Britten J A, Brown G V, Chen H, Clothiaux E J, Cottam J, Förster E, Gu M F, Harris C L, Kahn S M, Lepson J K, Neill P A, Savin D W, Schulte-Schrepping H, Schweikhard L, Smith A J, Träbert E, Tschischgale J, Utter S B, Wong K L 2001 Phys. Scr. 2001 268Google Scholar

    [81]

    Morgan C A, Serpa F G, Takács E, Meyer E S, Gillaspy J D, Sugar J, Roberts J R, Brown C M, Feldman U 1995 Phys. Rev. Lett. 74 1716Google Scholar

    [82]

    Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072Google Scholar

    [83]

    Christoph B, Andreas F, Gerd F, Rainer R 1997 Phys. Scr. 1997 360Google Scholar

    [84]

    Currell F J, Asada J, Ishii K, Minoh A, Motohashi K, Nakamura N, Nishizawa K, Ohtani S, Okazaki K, Sakurai M, Shiraishi H, Tsurubuchi S, Watanabe H 1996 J. Phys. Soc. Jpn. 65 3186Google Scholar

    [85]

    López-Urrutia J R C, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. 1999 502Google Scholar

    [86]

    Mianhong H, Yong L, Yang Y, Shimin W, Weidong C, Wei H, Panlin G, Di L, Yunqing F, Min H, Xuemei Z, Roger H, Leif L, Yaming Z 2007 J. Phys. Conf. Ser. 58 419Google Scholar

    [87]

    Schuch R, Tashenov S, Orban I, Hobein M, Mahmood S, Kamalou O, Akram N, Safdar A, Skog P, Solders A, Zhang H 2010 J. Instrum. 5 C12018Google Scholar

    [88]

    Dilling J, Baartman R, Bricault P, Brodeur M, Blomeley L, Buchinger F, Crawford J, Crespo López-Urrutia J R, Delheij P, Froese M, Gwinner G P, Ke Z, Lee J K P, Moore R B, Ryjkov V, Sikler G, Smith M, Ullrich J, Vaz J 2006 Int. J. Mass Spectrom. 251 198Google Scholar

    [89]

    Nakamura N, Kikuchi H, Sakaue H A, Watanabe T 2008 Rev. Sci. Instrum. 79 063104Google Scholar

    [90]

    Micke P, Kühn S, Buchauer L, Harries J R, Bücking T M, Blaum K, Cieluch A, Egl A, D. Hollain, Kraemer S, Pfeifer T, Schmidt P O, Schüssler R X, Schweiger C, Stöhlker T, Sturm S, Wolf R N, Bernitt S, López-Urrutia J R C 2018 Rev. Sci. Instrum. 89 063109Google Scholar

    [91]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [92]

    Lapierre A, López-Urrutia J R C, Braun J, Brenner G, Bruhns H, Fischer D, Martínez A J G, V. Mironov C O, Sikler G, Orts R S, Tawara H, Ullrich J, V. M. Shabaev, Tupitsyn I I, Volotka A 2006 Phys. Rev. A 73 052507Google Scholar

    [93]

    Mäckel V 2010 (der Ruprecht-Karls-Universität Heidelberg

    [94]

    Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O, López-Urrutia J R C 2015 Science 347 1233Google Scholar

    [95]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [96]

    Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C, Stöhlker T 2016 Phys. Rev. A 93 052502Google Scholar

    [97]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

  • [1] 管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林. 锂离子精密光谱与核结构信息. 物理学报, 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [2] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究. 物理学报, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [3] 钟振祥. 氢分子离子超精细结构理论综述. 物理学报, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [4] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [5] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [7] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [8] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 物理学报, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [9] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [10] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量. 物理学报, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [11] 杨兆锐, 张小安, 徐秋梅, 杨治虎. 高电荷态Krq+与Al表面碰撞发射可见光的研究. 物理学报, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [12] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应. 物理学报, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [13] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [14] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [15] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [16] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [17] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [18] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究. 物理学报, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
计量
  • 文章访问数:  1680
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 修回日期:  2024-09-09
  • 上网日期:  2024-09-19
  • 刊出日期:  2024-10-20

/

返回文章
返回