-
磁场作为霍尔推力器的关键设计参数之一,其通过直接影响电子输运、中性原子电离、等离子体分布等微观行为,间接影响推力器的宏观性能。目前,针对霍尔推力器磁场影响的研究更多的是关注放电通道内磁场大小以及分布的影响,而对羽流区磁场的影响研究相对较少。基于此,本文利用二维粒子-流体混合模型研究了霍尔推力器羽流区的轴向磁场分布对推力器性能的影响。研究结果表明,在放电通道内轴向磁场分布不变的情况下,改变羽流区的轴向磁场梯度对推力有显著的影响。放电通道中的电势降随着羽流区轴向磁场梯度的减小而减小,羽流区电场以及放电通道中的离子数密度峰值则随着羽流区轴向磁场梯度的减小而增加。增加羽流区的磁感应强度,有助于推力器性能的提升。更明确的说,羽流区的磁场梯度存在一个临界值,当羽流区轴向磁场梯度大于临界值时,推力随羽流区轴向磁场梯度的减小而增加。当羽流区轴向磁场梯度小于临界值时,推力随羽流区轴向磁场梯度的减小而轻微的减小。通过对不同羽流区磁场分布下的等离子体电势、电场、离子数密度,以及电离率分布的比较表明,羽流区磁场通过影响电子迁移率改变电场的分布,而电场分布的改变则会对推力产生影响。本文的研究结果将对霍尔推力器性能优化,以及磁场设计提供理论支撑。As one of the key design parameters of Hall thruster, magnetic field indirectly affects the macroscopic performance of the thruster by directly affecting electron transport, neutral atom ionization, plasma distribution and other microscopic behaviors. At present, the study on the influence of Hall thruster magnetic field focuses more on the size and distribution of the magnetic field in the discharge channel, while the little research on the influence of the plume magnetic field on the thruster. Based on this, the effect of plume region axial magnetic field profile on the performance of Hall thruster is studied by using two-dimensional hybrid simulation. The research results show that the axial magnetic field gradient in the plume region has a significant influence on the thruster performance, when the magnetic field characteristics (magnetic field topology and magnetic field intensity) in the discharge channel remain unchanged. The potential drop in the discharge channel decreases with the axial magnetic field gradient in the plume region decreasing. However,the electric field in the plume region and the peak ion number density in the discharge channel increase with the axial magnetic field gradient in the plume region decreasing. Overall, the performance of the thruster improvement by increasing the magnetic field strength in the plume region. More specifically, there is a critical value of axial magnetic field gradient in the plume region. When the axial magnetic field gradient in the plume region is greater than the critical value, the thrust increases with the axial magnetic field gradient decreasing. When the axial magnetic field gradient of the plume region is less than the critical value, the thrust decreases slightly with the axial magnetic field gradient decreasing. The comparison of plasma potential, electric field, ion number density and ionization rate distribution under different magnetic field distribution in the plume region shows that the effect of plume magnetic field on thrust is to affect the distribution of electric field in space by influencing the mobility of electrons, thus the thrust will change due to electric field. The results of this paper will provide theoretical support for the improvement performance of hall thrusters and the design of magnetic fields.
-
Keywords:
- Hall thruster /
- plume region /
- gradient of magnetic field /
- ionization rate
-
[1] Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
[2] Li W B, Ding Y J, Wei L Q, Han L, Yu D R 2017 Vacuum 136 77-81
[3] Taccogna F, Minelli P, Capitelli M, Longo S, 2012 American Institute of Physics 1501 1390
[4] Raitses Y, Fisch N J 2001 Phys. Plasmas 8 2579
[5] Shitrit S, Ashkenazy J, Appelbaum G, Warshavsky A 2008 IEEE Trans. Plasma Sci. 36 2025-2033
[6] Gawron D, Mazouffre S, Sadeghi N, Héron A 2008 Plasma Sources Sci. Technol.17 025001
[7] Shmelev A V, Lovtsov A S 2012 Technical Physics Letters 38 544-547
[8] Hofer R R, Geoibel D M, Mikellides I G, Katz I, 2014 J. Appl. Phys. 115 043304
[9] Li H, Fan H T, Liu X Y, Ding M H, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Vacuum 162 78-84
[10] Garrigues L, Hagelarr G J M, Bareilles J, Boniface C, Boeuf J P 2003 Phys. Plasmas 10 4886-4892
[11] Sommier E, Allis M K, Cappelli M A 2005 The 29th International Electric Propulsion Conference, October 31-November 4, Princeton University, IEPC-2005-189
[12] Ahedo E, Antón A, Garmendia I,Caro I 2007 The 30th International Electric Propulsion Conference, September 17-20, Florence, Italy, IEPC-2007-067
[13] Boniface C, Garrigues L, Hagelaar G J M, Boefu J P 2006 Appl. Phys.Lett. 89 161503
[14] Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 J. Appl. Phys. 115 203304;
[15] Perales-Dĺaz J, Domĺnguez-Vázquez Fajardo P, Ahedo E, Faraji F, Reza M, Andreussi T 2022 J. Appl. Phys. 131 103302
[16] Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 1627
[17] Liu J W, Li H, Hu Y L, Liu X Y, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Contrib. Plasma Phys.e201800001
[18] Yang S X, Wang Q N, Gao J, Jia Y H, Geng H, Guo N, Chen X W, Yuan X L, Zhang P 2022 Acta Phys. Sin. 71 105201
[19] Keidar M, Boyd I D 1999 J. Appl.Phys. 86 4786
[20] Mikellides I G, Katz I, Mandell M J, Snyder J S 2001 37th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, Utah, July 8-11, AIAA-2001-3505
[21] Boyd I D, Yim J M 2004 J.Appl.Phys. 95 4575
[22] Raitses Y, Gaysoso J C, Merino E, Fisch N J 2010 46th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, July 25-28, AIAA-2010-6621
[23] Hu P, Liu H, Mao W, Yu D R, Gao Y Y 2015 Phys. Plasmas 22 103502
[24] Kim H, Lim Y, Choe W, Park S, Seon J 2015 Appl. Phys. Lett. 106 154103
[25] Singh S, Malik H K 2023 J.Astrophys. Astr. 44 3
[26] Hofer R R, Gallimore A D 2006 J. Propul. Power 22, 721
[27] Hofer R R, Gallimore A D 2006 J. Propul. Power 22, 732-740
[28] Henaux C, Vilamot R, Garrigues L, Harribey D 2012 20th International Conferences on Electrical Machines, Marseille, France, September2-5, 2533-2537
[29] Domonkos M T, Gallimore A D, Marrese C M, Haas J M 2000 J. Propul. Power 16 91-98
[30] Liang R, Gallimore A D 2011 49th AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 4-7, AIAA-2011-1016
[31] Adam J C, Héron A, Laval G 2004 Phys. Plasma 11 295
[32] Lafleur T, Martorelli R, Chabert P, Bourdon A 2018 Phys. Plasma 25 061202
[33] Coche P, Garrigues L 2014 Phys. Plasmas 21 023503
[34] Chen L, Kan Z C,Gao W F, et al 2024 Chin. Phys. B 33 015203
[35] Yu D R, Qing S W, Liu H, Li H 2011 Contrib. Plasma Phys. 51 955
[36] Yu D R, Song M, Liu H, Ding Y J, Li H 2012 Phys. Plasmas 19 033503
[37] Szabo J, Warner N, Martinez-Sanchez M, Batishchev O 2014 J. Propuls. Power 30 197
[38] Taccogna F, Minelli P 2018 Phys. Plasmas 25 061208
[39] Garrigues L, Hagelarr G J M, Boniface C et al 2004 Appl. Phys. Lett 22 85
[40] Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010
[41] Katz I, Jongeward G, Davis V, et al 2001 37th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, Utah, July 8-11, AIAA-2001-3355
[42] Kawashima R, Komurasaki K, Schönherr T Koizumi H 2016 54th AIAA Aerospace Sciences Meeting, San Diego,California, USA, January 4-8, AIAA-2016-2159
[43] Kawashima R, Wang Z X, Chamarthi A S 2018 55th AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 8-12, 2018, AIAA-2018-0175
[44] Hofer R R, Mikellides I G, Katz I, Goebel D M 2007 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con, Honolulu, Hawaii, April 23-26, AIAA-2007-5267.
[45] Manzella, D. H., Jankovsky, R., Elliott, F., Mikellides, I., Jongeward, G., and Allen, D. 2001 27th International Electric Propulsion Conference, IEPC-2001-044.
[46] Andreussi T, Giannetti V, Leporini A, Saravia M M, Andrenucci M 2018 Plasma Phys. Control. Fusion. 60 014015.
[47] Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schonherr T, Koizumi H, Komurasaki K 2014 Vacuum 10 159-164.
计量
- 文章访问数: 20
- PDF下载量: 0
- 被引次数: 0