搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向地基引力波探测频段的超低噪声激光强度噪声评估系统

李响 王嘉伟 李番 黄天时 党昊 赵得胜 田龙 史少平 李卫 尹王保 郑耀辉

引用本文:
Citation:

面向地基引力波探测频段的超低噪声激光强度噪声评估系统

李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉
cstr: 32037.14.aps.74.20241319

Ultra-low-noise laser intensity noise evaluation system in Hz frequency band for ground-based gravitational wave detection

Li Xiang, WANG Jiawei, Li Fan, HUANG Tianshi, Dang Hao, ZHAO Desheng, Tian Long, SHI Shaoping, Li Wei, YIN Wangbao, ZHENG Yaohui
cstr: 32037.14.aps.74.20241319
PDF
HTML
导出引用
  • 引力波的直接探测打开了认识宇宙的新窗口, 开辟了多信使天文学, 各种天文事件产生引力波的频段涵盖范围较大, 不同频段引力波的探测机理及方案不尽相同. 目前, 正在运行的地基引力波探测装置的探测频段主要集中在10 Hz—10 kHz范围, 为达到探测灵敏度需求, 要对激光强度噪声进行准确评估并通过光电反馈将其抑制到≤2.0×10–9 Hz–1/2@10 Hz以及≤4.0×10–7 Hz–1/2@10 kHz. 本文基于激光噪声机理分析, 通过探究极小噪声评估方案, 研发低噪声光电探测器, 对比前置放大器不同放大倍数对信号的噪声耦合, 编写上位机操控及数据处理程序, 从而构建了低噪声高精度集成化激光强度噪声评估系统. 实验结果表明, 前置放大器以及动态信号分析仪的整体电子学噪声为3.8×10–9 Hz–1/2@(10 Hz—10 kHz); 光电探测器电子学噪声为$ 1.4 \times {10^{ - 8}} \;{\text{V}}/\sqrt {{\text{Hz}}} $@10 Hz &$ 8.1 \times {10^{ - 9}} \;{\text{V}}/\sqrt {{\text{Hz}}} $@10 kHz, 通过标准正弦信号进行校准等措施, 检验了评估系统的准确性. 相关研究结果为制备高功率低噪声激光光源及引力波探测等领域提供了实验基础.
    The direct detection of gravitational waves has opened up a new window for understanding the universe and trailblazed multi-messenger astronomy. The frequency bands of gravitational waves generated by various astronomical events can cover a broadband range, and the detection mechanisms and schemes for gravitational waves in different frequency bands are different. For example, the ground-based gravitational wave detection has a frequency band ranging from 10 Hz to 10 kHz, which is based on Michelson interferometer. The space gravitational wave detection has a frequency band in a range of 0.1 mHz–1 Hz , which is based on space interferometer. The pulsar gravitational wave detection has a frequency band ranging from 1×10–9 Hz to 1×10–7 Hz, which is based on pulsar timing array. The next-generation ground-based gravitational wave project requires higher sensitivity to detect faint signals, necessitating an assessment system with minimal background noise to accurately measure the laser relative intensity noise. At present, the detection frequency band of ground-based gravitational wave detection devices in operation is mainly concentrated in a range of 10 Hz–10 kHz. To satisfy the detection sensitivity requirements, the laser relative intensity noise should be accurately evaluated and suppressed to ≤2.0×10–9 Hz–1/2 at 10 Hz and ≤4.0×10–7 Hz–1/2 at 10 kHz by photoelectric feedback. In this work, an evaluation and characterization system is constructed for ground-based gravitational wave band laser intensity noise, which is based on low noise and high sensitivity photoelectric detection device and combined with LabVIEW and MATLAB algorithm programming for instrument control and data processing. This low noise evaluation system is used to test the background noise of fast Fourier transform (FFT) analyzer SR760, preamplifier SR560, photoelectric detector electronic noise and intensity noise of homemade optical fiber amplifier, and then the data extraction and image processing are carried out by LabVIEW and MATLAB algorithms, and finally the ground-based gravitational wave frequency band system is evaluated. The experimental results show that the electronic noises for the preamplifier SR560 and the FFT analyzer SR760 are lower than 3.8×10–9 Hz–1/2@(10 Hz–10 kHz). The electronic noise for the photodetector is lower than $ 1.4 \times {10^{ - 8}}\;{\text{V}}/\sqrt {{\text{Hz}}} $ at 10 Hz and $ 8.1 \times {10^{ - 9}}\;{\text{V}}/\sqrt {{\text{Hz}}} $ at 10 kHz, and the accuracy of the system is calibrated and tested by the standard sinusoidal signal. Finally, the noise of commercial laser is evaluated and compared with the factory data to verify the accuracy of the evaluation system. Related research, device and system development provide hardware, software and theoretical basis for preparing high-power low-noise laser light source and gravitational wave detection, and also provide the theoretical basis and evaluation criteria for detecting the ground-based gravitational wave .
      通信作者: 赵得胜, deshengzhao@sxu.edu.cn ; 田龙, tianlong@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62225504, U22A6003, 62027821, 62035015, 12174234, 12274275, 12304399)、山西省基础研究计划(批准号: 202303021212003, 202303021224006)和山西省重点研发计划(批准号: 202302150101015)资助的课题.
      Corresponding author: ZHAO Desheng, deshengzhao@sxu.edu.cn ; Tian Long, tianlong@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62225504, U22A6003, 62027821, 62035015, 12174234, 12274275, 12304399), the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202303021212003, 202303021224006), and the Key R&D Program of Shanxi Province, China (Grant No. 202302150101015).
    [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [2]

    Schmidt P 2019 J. Phys. Conf. Ser. 1468 012218Google Scholar

    [3]

    Patrick K 2010 Ph. D. Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [4]

    Anza S 2005 Classical Quant. Grav. 22 S125Google Scholar

    [5]

    Rer N 2005 Ph. D Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [6]

    Armano M, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 231101Google Scholar

    [7]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [8]

    Ran D 2024 J. Cosmol. Astropart. Phys. 2 16Google Scholar

    [9]

    Daniel J, Andrew Z, Ryan M, Valentina D 2022 Astrophys. J. Lett. 1 L7Google Scholar

    [10]

    Abbott B P, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [11]

    Antonino C 2023 EPJ Web of Conferences RICAP-22 280 03003Google Scholar

    [12]

    Hofacker C 2020 Aerospace Am. 58 10

    [13]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [14]

    李卫, 谢超帮, 李庆回, 鞠明健, 武志学, 郑耀辉 2023 量子光学学报 29 040201Google Scholar

    Li W, Xie C B, Li Q H, Ju M J, Wu Z X, Zheng Y H 2023 J. Quantum Optics 29 040201Google Scholar

    [15]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [16]

    郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才 2024 物理学报 73 050401Google Scholar

    Guo X Q, Zhou J, Wang C X, Qin C, Guo C Z, Li G, Zhang P F, Zhang T C 2024 Acta Phys. Sin. 73 050401Google Scholar

    [17]

    Vahlbruch H, Wilken D, Mehmet M 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [18]

    Acernese F, Agathos M. 2019 Phys. Rev. Lett. 123 2311081Google Scholar

    [19]

    Benno W, Peter K, Rick S, Peter F 2011 Pre-Stabilized Laser Design Requirements LIGO-T050036-v4

    [20]

    Rollins J, Ottaway D, Zucker M, Weiss R, Abbott R 2004 Opt. Lett. 29 1876Google Scholar

    [21]

    Patrick K, Benno W, Karsten D 2009 Opt. Lett. 34 2912Google Scholar

    [22]

    Jonas J, Patrick O, Benno W 2017 Opt. Lett. 42 755Google Scholar

    [23]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y 2022 Acta Phys. Sin. 71 209501Google Scholar

    [24]

    Michael T, Gerhard H 2006 Measurement 39 12Google Scholar

    [25]

    Fabian M, Benno W 2022 Instruments 15 1Google Scholar

    [26]

    Cooley J W, Tukey J W 1965 Math. Comput. 19 297Google Scholar

    [27]

    Welch P D 1967 IEEE Trans. Audio Electroacoust. 15 70Google Scholar

    [28]

    张骥, 魏珊珊, 刘昊炜, 刘元煌, 姚波, 毛庆和 2021 中国激光 48 0301002Google Scholar

    Zhang J, Wei S S, Liu H W, Liu Y H, Yao B, Mao Q H 2021 Chin. J. Lasers 48 0301002Google Scholar

    [29]

    郑立昂, 李番, 王嘉伟, 李健博, 高丽, 贺子洋, 尚鑫, 尹王保, 田龙, 杨文海, 郑耀辉 2023 光学学报 52 0552220Google Scholar

    Zheng L A, Li F, Wang J W, Li J B, Gao L, He Z Y, Shang X, Yin W B, Tian L, Yang W H, Zheng Y H 2023 Acta Photonica Sin. 52 0552220Google Scholar

    [30]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quant. Grav. 27 084023Google Scholar

    [31]

    Patrick K, Frank S, Benno W, Karsten D 2007 Rev. Sci. Instrum. 78 073103Google Scholar

    [32]

    Frank S, Patrick K, Michèle H, Benno W, Karsten D 2006 Opt. Lett. 13 2000Google Scholar

    [33]

    Jennrich O, Newton G, Skeldon K D, Hough J 2002 Opt. Com. 205 405Google Scholar

    [34]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201Google Scholar

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 J. Quantum Opt. 31 040201Google Scholar

  • 图 1  地基引力波探测频段激光强度噪声测试评估系统架构

    Fig. 1.  Architecture of laser intensity noise measurement and evaluation system.

    图 2  地基引力波探测频段激光强度噪声评估系统程序流程图

    Fig. 2.  Program flow chart of laser intensity noise evaluation system for ground-based GW detection.

    图 4  高精度测试仪器本底噪声表征 (a) FFT分析仪测试结果; (b)外加前置放大器后电子学噪声测试结果

    Fig. 4.  Electronic noise characterization of high precision instruments: (a) The test result of FFT; (b) the electronic noise characterization of pre-amplifier.

    图 3  地基引力波探测频段激光强度噪声评估系统实验装置示意图, 其中Laser为激光器; ISO为光隔离器; λ/4为λ/4波片; λ/2为λ/2波片; PBS为偏振分束棱镜; BS为分束棱镜; len为f = 50 mm透镜; PD为光电探测器; PA为前置放大器; FFT analyzer为傅里叶分析仪; OSC为示波器; Vref为参考电压源; PC为计算机

    Fig. 3.  Evaluation system for laser intensity noise at ground-based gravitational wave detection frequency band, where Laser is soild state laser, ISO is isolator, λ/4 is λ/4 waveplate, λ/2 is λ/2 waveplate, PBS is polarization beam splitter, BS is beam splitter, len is f = 50 mm len, PD is photodetector, PA is pre-amplifier, FFT analyzer is SR760, OSC is oscilloscope, Vref is voltage reference, PC is computer.

    图 5  信号源验证结果

    Fig. 5.  Verification results with 1 mV sinusoidal signal.

    图 6  (a)光电探测器原理图; (b)不同探测器性能对比测试

    Fig. 6.  (a) Schematic diagram of PD; (b) the contrast test of different PD’s performance.

    图 7  不同商用激光器输出激光相对强度噪声测试结果

    Fig. 7.  Test relative intensity noise results of different commercial lasers.

  • [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [2]

    Schmidt P 2019 J. Phys. Conf. Ser. 1468 012218Google Scholar

    [3]

    Patrick K 2010 Ph. D. Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [4]

    Anza S 2005 Classical Quant. Grav. 22 S125Google Scholar

    [5]

    Rer N 2005 Ph. D Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [6]

    Armano M, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 231101Google Scholar

    [7]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [8]

    Ran D 2024 J. Cosmol. Astropart. Phys. 2 16Google Scholar

    [9]

    Daniel J, Andrew Z, Ryan M, Valentina D 2022 Astrophys. J. Lett. 1 L7Google Scholar

    [10]

    Abbott B P, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [11]

    Antonino C 2023 EPJ Web of Conferences RICAP-22 280 03003Google Scholar

    [12]

    Hofacker C 2020 Aerospace Am. 58 10

    [13]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [14]

    李卫, 谢超帮, 李庆回, 鞠明健, 武志学, 郑耀辉 2023 量子光学学报 29 040201Google Scholar

    Li W, Xie C B, Li Q H, Ju M J, Wu Z X, Zheng Y H 2023 J. Quantum Optics 29 040201Google Scholar

    [15]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [16]

    郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才 2024 物理学报 73 050401Google Scholar

    Guo X Q, Zhou J, Wang C X, Qin C, Guo C Z, Li G, Zhang P F, Zhang T C 2024 Acta Phys. Sin. 73 050401Google Scholar

    [17]

    Vahlbruch H, Wilken D, Mehmet M 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [18]

    Acernese F, Agathos M. 2019 Phys. Rev. Lett. 123 2311081Google Scholar

    [19]

    Benno W, Peter K, Rick S, Peter F 2011 Pre-Stabilized Laser Design Requirements LIGO-T050036-v4

    [20]

    Rollins J, Ottaway D, Zucker M, Weiss R, Abbott R 2004 Opt. Lett. 29 1876Google Scholar

    [21]

    Patrick K, Benno W, Karsten D 2009 Opt. Lett. 34 2912Google Scholar

    [22]

    Jonas J, Patrick O, Benno W 2017 Opt. Lett. 42 755Google Scholar

    [23]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y 2022 Acta Phys. Sin. 71 209501Google Scholar

    [24]

    Michael T, Gerhard H 2006 Measurement 39 12Google Scholar

    [25]

    Fabian M, Benno W 2022 Instruments 15 1Google Scholar

    [26]

    Cooley J W, Tukey J W 1965 Math. Comput. 19 297Google Scholar

    [27]

    Welch P D 1967 IEEE Trans. Audio Electroacoust. 15 70Google Scholar

    [28]

    张骥, 魏珊珊, 刘昊炜, 刘元煌, 姚波, 毛庆和 2021 中国激光 48 0301002Google Scholar

    Zhang J, Wei S S, Liu H W, Liu Y H, Yao B, Mao Q H 2021 Chin. J. Lasers 48 0301002Google Scholar

    [29]

    郑立昂, 李番, 王嘉伟, 李健博, 高丽, 贺子洋, 尚鑫, 尹王保, 田龙, 杨文海, 郑耀辉 2023 光学学报 52 0552220Google Scholar

    Zheng L A, Li F, Wang J W, Li J B, Gao L, He Z Y, Shang X, Yin W B, Tian L, Yang W H, Zheng Y H 2023 Acta Photonica Sin. 52 0552220Google Scholar

    [30]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quant. Grav. 27 084023Google Scholar

    [31]

    Patrick K, Frank S, Benno W, Karsten D 2007 Rev. Sci. Instrum. 78 073103Google Scholar

    [32]

    Frank S, Patrick K, Michèle H, Benno W, Karsten D 2006 Opt. Lett. 13 2000Google Scholar

    [33]

    Jennrich O, Newton G, Skeldon K D, Hough J 2002 Opt. Com. 205 405Google Scholar

    [34]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201Google Scholar

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 J. Quantum Opt. 31 040201Google Scholar

  • [1] 尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉. 0.1 mHz-1 Hz频段超低噪声光电探测器实验研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241635
    [2] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用. 物理学报, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [4] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究. 物理学报, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [5] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析. 物理学报, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [6] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [7] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [8] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, 2022, 71(4): 044204. doi: 10.7498/aps.71.20211253
    [9] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [10] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统. 物理学报, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [11] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉. 面向第三代地基引力波探测的激光源需求分析. 物理学报, 2022, 71(16): 164203. doi: 10.7498/aps.71.20220552
    [12] 刘磊, 徐志博, 钱文硕, 李文杰, 谢芳, 钟志, 单明广. 双合成波长数字全息低噪声分级解包裹方法. 物理学报, 2021, 70(22): 224204. doi: 10.7498/aps.70.20210669
    [13] 黄冠, 耿超, 李枫, 李新阳, 吕国云, 樊养余. 光电探测噪声对单模光纤自适应耦合装置的闭环性能影响研究. 物理学报, 2021, 70(22): 224212. doi: 10.7498/aps.70.20210615
    [14] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211253
    [15] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [16] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [17] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控. 物理学报, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [18] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 激光光源线宽对外差探测性能的影响. 物理学报, 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [19] 闫振纲, 林颖璐, 杨娟, 李振华, 卞保民. 光电探测器随机噪声特征量统计分布函数. 物理学报, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [20] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究. 物理学报, 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
计量
  • 文章访问数:  296
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2024-12-16
  • 上网日期:  2024-12-19

/

返回文章
返回