搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于埋底界面修饰策略制备正式钙钛矿太阳电池

商文丽 王立坤 张晓春 岳鑫 李一锋 万政慧 杨华翼 李婷 王辉

引用本文:
Citation:

基于埋底界面修饰策略制备正式钙钛矿太阳电池

商文丽, 王立坤, 张晓春, 岳鑫, 李一锋, 万政慧, 杨华翼, 李婷, 王辉
cstr: 32037.14.aps.74.20241549

Fabrication of n-i-p perovskite solar cells based on strategy of buried interface modification

SHANG Wenli, WANG Likun, ZHANG Xiaochun, YUE Xin, LI Yifeng, WAN Zhenghui, YANG Huayi, LI Ting, WANG Hui
cstr: 32037.14.aps.74.20241549
PDF
HTML
导出引用
  • 二氧化锡是正式钙钛矿太阳电池理想的电子传输层材料. 二氧化锡与钙钛矿之间的界面缺陷是制约钙钛矿太阳电池转换效率提高的关键因素. 因此, 本文提出了一种基于埋底界面修饰策略制备正式钙钛矿太阳电池的方法. 通过在二氧化锡中掺杂甲基溴化胺, 形成埋底界面, 减少了二氧化锡与钙钛矿之间的界面缺陷, 提升了二氧化锡的电子迁移率, 并促进高质量钙钛矿材料的生长, 制备的正式钙钛矿太阳电池转换效率达23.12%, 为制备高效正式钙钛矿太阳能电池提供了一种有效策略.
    Normal (n-i-p) perovskite solar cells (PSCs) have received increasing attention due to their advantages such as high conversion efficiency and good stability. Tin dioxide is an ideal electron transport layer material for normal perovskite solar cells. Among various available electron transport layers, tin dioxide stands out because of its excellent stability, low density of defect states, and appropriate energy levels. The interface defects between tin dioxide and perovskite are the key factors restricting the improvement of the conversion efficiency in perovskite solar cells. Therefore, a method of fabricating normal perovskite solar cells based on the buried interface modification strategy is proposed in this work. By doping methylammonium bromide into tin dioxide to form a buried interface, the interface defects between tin dioxide and perovskite are reduced, the electron mobility of tin dioxide is enhanced, and the growth of high-quality perovskite materials is promoted. The conversion efficiency of the normal perovskite solar cells reaches 23.12%, providing an effective strategy for fabricating high-efficiency normal perovskite solar cells.
      通信作者: 李婷, tingli430@lnnu.edu.cn ; 王辉, hwang1606@dicp.ac.cn
    • 基金项目: 辽宁省科技厅博士启动基金(批准号: 2021-BS-200)资助的课题.
      Corresponding author: LI Ting, tingli430@lnnu.edu.cn ; WANG Hui, hwang1606@dicp.ac.cn
    • Funds: Project supported by the Doctor Foundation of Science and Technology Department of Liaoning Province, China (Grant No. 2021-BS-200).
    [1]

    Zhang Y Q, Liu X T, Li P W, Duan Y Y, Hu X T, Li F Y, Song Y L 2019 Nano Energy 56 733Google Scholar

    [2]

    Liang C, Li P W, Zhang Y Q, Gu H, Cai Q B, Liu X T, Wang J F, Wen H, Shao G S 2017 J. Power Sources 372 235Google Scholar

    [3]

    Yang S M, Wen J L, Liu Z K, Che Y H, Xu J, Wang J G, Xu D F, Yuan N Y, Ding J N, Duan Y W, Liu S Z 2021 Adv. Energy Mater. 12 2103019Google Scholar

    [4]

    Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z 2018 Nat. Commun. 9 4609Google Scholar

    [5]

    You S, Zeng H P, Ku Z L, Wang X Z, Wang Z, Rong Y G, Zhao Y, Zheng X, Luo L, Li L, Zhang S J, Li M, Gao X Y, Li X 2020 Adv. Mater. 32 2003990Google Scholar

    [6]

    Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar

    [7]

    Yang Y G, Lu H Z, Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Zakeeruddin S M, Liu Y H, Grätzel M, Hagfeldt A 2021 Energy Environ. Sci. 14 3447Google Scholar

    [8]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z X, You J B 2019 Nat. Photonics 13 460Google Scholar

    [9]

    Lou Q, Han Y F, Liu C, Zheng K H, Zhang J S, Chen X, Du Q, Chen C, Ge Z Y 2021 Adv. Energy Mater. 11 2101416Google Scholar

    [10]

    Zhang Z A, Jiang J K, Liu X, Wang X, Wang L Y, Qiu Y K, Zhang Z F, Zheng Y T, Wu X Y, Liang J H, Tian C C, Chen C C, 2021 Small 18 2105184Google Scholar

    [11]

    Liu Z Z, Deng K M, Hu J, Li L 2019 Angew. Chem. Int. Ed. 58 11497Google Scholar

    [12]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [13]

    Parida B, Jin I S, Jung J W 2021 Chem. Mater. 33 5850Google Scholar

    [14]

    Park S Y, Zhu K 2022 Adv. Mater. 34 2110438Google Scholar

    [15]

    Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar

    [16]

    Yang L, Feng J S, Liu Z K, Duan Y W, Zhan S, Yang S M, He K, Li Y, Zhou Y W, Yuan N Y, Ding J N, Liu S Z 2022 Adv. Mater. 34 2201681Google Scholar

    [17]

    Osman M B S, Dessouky A Z M T, Kenawy M A, El-Sharkawy A A 1996 J. Therm. Anal. 46 1697Google Scholar

    [18]

    Yu H, Yeom H I, Lee J W, Lee K, Hwang D, Yun J, Ryu J, Lee J, Bae S, Kim S K, Jang J 2018 Adv. Mater. 30 1704825Google Scholar

    [19]

    Yang D, Zhou X, Yang R X, Yang Z, Yu W, Wang X L, Li C, Liu S Z, Chang R P H 2016 Energy Environ. Sci. 9 3071Google Scholar

    [20]

    Kim M, Jeong J, Lu H Z, Lee T K, Eickemeyer F T, Liu Y H, Choi I W, Choi S J, Jo Y, Kim H B, Mo S I, Kim Y K, Lee H, An N G, Cho S, Tress W R, Zakeeruddin S M, Hagfeldt A, Kim J Y, Grätzel M, Kim D S 2022 Science 375 302Google Scholar

    [21]

    Liu C, Cheng Y B, Ge Z 2020 Chem. Soc. Rev. 49 1653Google Scholar

    [22]

    Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S 2017 Nat. Commun. 8 1890Google Scholar

    [23]

    Wang H Y, Xu H J, Wu S H, Wang Y, Wang Y, Wang X H, Liu X D, Huang P 2023 Chem. Eng. J. 476 146587Google Scholar

    [24]

    Li Y, Zheng J L, Chen X L, Sun C, Jiang H, Li G R, Zhang X Y 2021 J. Alloys Compd. 886 161300Google Scholar

    [25]

    Yang S M, Liu W D, Han Y, Liu Z K, Zhao W J, Duan C Y, Che Y H, Gu H S, Li Y B, Liu S Z 2020 Adv. Energy Mater. 10 2002882Google Scholar

    [26]

    Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X W, Li S, Gong J Q, Luther J M , Li Z A, Zhu Z L 2023 Science 382 284Google Scholar

    [27]

    Ji X F, Bi L Y, Fu Q, Li B L, Wang J W, Jeong S Y, Feng K, Ma S X, Liao Q G, Lin F R, Woo H Y, Lu L F, Jen A K Y, Guo X G 2023 Adv. Mater. 35 2303665Google Scholar

    [28]

    Heo J, Lee S W, Yong J, Park H, Lee Y K, Shin J, Whang D R, Chang D W, Park H J 2023 Chem. Eng. J. 474 145632Google Scholar

  • 图 1  SnO2的XPS光谱 (a)未修饰样品(红线)和埋底界面修饰样品(蓝线)的Sn 3d; (b)未修饰样品(红线)和埋底界面修饰样品(蓝线)的O 1s; (c)未修饰样品Sn 3d的拟合光谱; (d)未修饰样品O 1s的拟合光谱; (e) 埋底界面修饰样品Sn 3d的拟合光谱; (f) 埋底界面修饰样品O 1s的拟合光谱

    Fig. 1.  XPS spectra of SnO2: (a) Sn 3d for unmodified samples (red line) and buried interface modified samples (blue line); (b) O 1s for unmodified samples (red line) and buried interface modified samples (blue line); (c) fitting spectra of Sn 3d for unmodified samples; (d) fitting spectra of O 1s for unmodified samples; (e) fitting spectra of Sn 3d for buried interface modified samples; (f) fitting spectra of O 1s for buried interface modified samples.

    图 2  (a) SnO2薄膜的电子迁移率; (b) 未修饰样品(红线)和埋底界面修饰样品(蓝线) SnO2的透过率光谱

    Fig. 2.  (a) Electron mobility of SnO2 films; (b) transmission spectra of SnO2 for unmodified samples (red line) and buried interface modified samples (blue line).

    图 3  SnO2薄膜的SEM图 (a)未修饰样品, (b)埋底界面修饰样品; SnO2薄膜的AFM图 (c)未修饰样品, (d)埋底界面修饰样品; SnO2薄膜的水接触角图 (e)未修饰样品, (f)埋底界面修饰样品

    Fig. 3.  SEM images of SnO2 films for (a) unmodified samples, (b) buried interface modified samples; AFM images of SnO2 films for (c) unmodified samples, (d) buried interface modified samples; water contact angle images of SnO2 films for (e) unmodified samples, (f) buried interface modified samples.

    图 4  钙钛矿薄膜的SEM图 (a)未修饰样品; (b)埋底界面修饰样品; (c)钙钛矿薄膜晶粒尺寸数量分布柱状图

    Fig. 4.  SEM images of perovskite films: (a) Unmodified samples; (b) buried interface modified samples; (c) histogram of grain size distribution in perovskite thin films.

    图 5  钙钛矿薄膜的AFM图, 其中(a)未修饰样品, (b)埋底界面修饰样品; 钙钛矿薄膜的水接触角图, 其中(c)未修饰样品, (d)埋底界面修饰样品

    Fig. 5.  AFM images of perovskite films for (a) unmodified samples, (b) buried interface modified samples; water contact angle images of perovskite thin films for (c) unmodified samples, (d) buried interface modified samples.

    图 6  未修饰样品(红线)和埋底界面修饰样品(蓝线)的XRD图和(001)晶相的放大图

    Fig. 6.  XRD patterns of unmodified samples (red line), buried interface modified samples (blue line), and enlarged images of the (001) crystal phase.

    图 7  钙钛矿薄膜的(a) PL图谱和(b) TRPL图谱, 其中红线为未修饰样品, 蓝线为埋底界面修饰样品

    Fig. 7.  (a) PL spectra and (b) TRPL spectra of unmodified samples (red line) and buried interface modified samples (blue line).

    图 8  未修饰样品(红线)和埋底界面修饰样品(蓝线)的SCLC曲线

    Fig. 8.  SCLC curves of unmodified samples (red line) and buried interface modified samples (blue line).

    图 9  钙钛矿电池 (a) 正向和反向扫描的J-V曲线; (b) PCE箱线图; (c) VOC箱线图; (d) JSC箱线图; (e) FF箱线图; (f) VOC随光强变化曲线图; (g) EQE曲线图; (h) 莫特-肖特基曲线

    Fig. 9.  Perovskite solar cells: (a) J-V curves for forward and reverse scans; (b) box plot of PCE; (c) box plot of VOC; (d) box plot of JSC; (e) box plot of FF; (f) curves of VOC varying with light intensity; (g) EQE curves; (h) Mott-Schottky curves.

    表 1  未修饰样品钙钛矿薄膜; 埋底界面修饰样品的钙钛矿薄膜的TRPL光谱拟合参数

    Table 1.  TRPL spectral fitting parameters for unmodified perovskite film samples and buried interface modified perovskite film samples.

    $ \tau $1/ns A1 $ \tau $2/ns A2 Taverage/ns
    Glass/FTO/SnO2/PVK 20.83 430.0 229.93 1.31 27.63
    Glass/FTO/SnO2+MABr/PVK 16.62 3165.42 243.48 1.24 17.91
    下载: 导出CSV

    表 2  钙钛矿太阳能电池参数

    Table 2.  Parameters of Perovskite Solar Cells.

    Devices VOC/V Jsc/(mA·cm–2) FF/% PCE/%
    glass/FTO/SnO2/PVK/Spiro-OMeTAD/AuForward1.0925.6763.8817.70
    Reverse1.1125.9675.0821.57
    glass/FTO/SnO2+MABr/PVK/Spiro-OMeTAD/AuForward1.1225.8477.7822.56
    Reverse1.1225.8079.9023.12
    下载: 导出CSV
  • [1]

    Zhang Y Q, Liu X T, Li P W, Duan Y Y, Hu X T, Li F Y, Song Y L 2019 Nano Energy 56 733Google Scholar

    [2]

    Liang C, Li P W, Zhang Y Q, Gu H, Cai Q B, Liu X T, Wang J F, Wen H, Shao G S 2017 J. Power Sources 372 235Google Scholar

    [3]

    Yang S M, Wen J L, Liu Z K, Che Y H, Xu J, Wang J G, Xu D F, Yuan N Y, Ding J N, Duan Y W, Liu S Z 2021 Adv. Energy Mater. 12 2103019Google Scholar

    [4]

    Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z 2018 Nat. Commun. 9 4609Google Scholar

    [5]

    You S, Zeng H P, Ku Z L, Wang X Z, Wang Z, Rong Y G, Zhao Y, Zheng X, Luo L, Li L, Zhang S J, Li M, Gao X Y, Li X 2020 Adv. Mater. 32 2003990Google Scholar

    [6]

    Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar

    [7]

    Yang Y G, Lu H Z, Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Zakeeruddin S M, Liu Y H, Grätzel M, Hagfeldt A 2021 Energy Environ. Sci. 14 3447Google Scholar

    [8]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z X, You J B 2019 Nat. Photonics 13 460Google Scholar

    [9]

    Lou Q, Han Y F, Liu C, Zheng K H, Zhang J S, Chen X, Du Q, Chen C, Ge Z Y 2021 Adv. Energy Mater. 11 2101416Google Scholar

    [10]

    Zhang Z A, Jiang J K, Liu X, Wang X, Wang L Y, Qiu Y K, Zhang Z F, Zheng Y T, Wu X Y, Liang J H, Tian C C, Chen C C, 2021 Small 18 2105184Google Scholar

    [11]

    Liu Z Z, Deng K M, Hu J, Li L 2019 Angew. Chem. Int. Ed. 58 11497Google Scholar

    [12]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [13]

    Parida B, Jin I S, Jung J W 2021 Chem. Mater. 33 5850Google Scholar

    [14]

    Park S Y, Zhu K 2022 Adv. Mater. 34 2110438Google Scholar

    [15]

    Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar

    [16]

    Yang L, Feng J S, Liu Z K, Duan Y W, Zhan S, Yang S M, He K, Li Y, Zhou Y W, Yuan N Y, Ding J N, Liu S Z 2022 Adv. Mater. 34 2201681Google Scholar

    [17]

    Osman M B S, Dessouky A Z M T, Kenawy M A, El-Sharkawy A A 1996 J. Therm. Anal. 46 1697Google Scholar

    [18]

    Yu H, Yeom H I, Lee J W, Lee K, Hwang D, Yun J, Ryu J, Lee J, Bae S, Kim S K, Jang J 2018 Adv. Mater. 30 1704825Google Scholar

    [19]

    Yang D, Zhou X, Yang R X, Yang Z, Yu W, Wang X L, Li C, Liu S Z, Chang R P H 2016 Energy Environ. Sci. 9 3071Google Scholar

    [20]

    Kim M, Jeong J, Lu H Z, Lee T K, Eickemeyer F T, Liu Y H, Choi I W, Choi S J, Jo Y, Kim H B, Mo S I, Kim Y K, Lee H, An N G, Cho S, Tress W R, Zakeeruddin S M, Hagfeldt A, Kim J Y, Grätzel M, Kim D S 2022 Science 375 302Google Scholar

    [21]

    Liu C, Cheng Y B, Ge Z 2020 Chem. Soc. Rev. 49 1653Google Scholar

    [22]

    Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S 2017 Nat. Commun. 8 1890Google Scholar

    [23]

    Wang H Y, Xu H J, Wu S H, Wang Y, Wang Y, Wang X H, Liu X D, Huang P 2023 Chem. Eng. J. 476 146587Google Scholar

    [24]

    Li Y, Zheng J L, Chen X L, Sun C, Jiang H, Li G R, Zhang X Y 2021 J. Alloys Compd. 886 161300Google Scholar

    [25]

    Yang S M, Liu W D, Han Y, Liu Z K, Zhao W J, Duan C Y, Che Y H, Gu H S, Li Y B, Liu S Z 2020 Adv. Energy Mater. 10 2002882Google Scholar

    [26]

    Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X W, Li S, Gong J Q, Luther J M , Li Z A, Zhu Z L 2023 Science 382 284Google Scholar

    [27]

    Ji X F, Bi L Y, Fu Q, Li B L, Wang J W, Jeong S Y, Feng K, Ma S X, Liao Q G, Lin F R, Woo H Y, Lu L F, Jen A K Y, Guo X G 2023 Adv. Mater. 35 2303665Google Scholar

    [28]

    Heo J, Lee S W, Yong J, Park H, Lee Y K, Shin J, Whang D R, Chang D W, Park H J 2023 Chem. Eng. J. 474 145632Google Scholar

  • [1] 杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹. 丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池. 物理学报, 2024, 73(15): 158401. doi: 10.7498/aps.73.20240561
    [2] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [4] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [8] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [9] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [10] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [11] 潘恒, 陈沛润, 石标, 李玉成, 高清运, 张力, 赵颖, 黄茜, 张晓丹. 钙钛矿电池纳米陷光结构的研究进展. 物理学报, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [12] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [13] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [14] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [15] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [16] 李海涛, 江亚晓, 涂丽敏, 李少华, 潘玲, 李文标, 杨仕娥, 陈永生. 退火温度对电子束蒸发沉积Cu2O薄膜性能的影响. 物理学报, 2018, 67(5): 053301. doi: 10.7498/aps.67.20172463
    [17] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [19] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [20] 张 苑, 赵 颖, 蔡 宁, 熊绍珍. 锐钛矿相TiO2纳米管的制备及其染料敏化太阳电池. 物理学报, 2008, 57(9): 5806-5809. doi: 10.7498/aps.57.5806
计量
  • 文章访问数:  316
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2024-11-26
  • 上网日期:  2024-12-04

/

返回文章
返回