搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扫描热探针技术的二维材料物性调控研究进展

赵世杰 马浩南 刘霞

引用本文:
Citation:

基于扫描热探针技术的二维材料物性调控研究进展

赵世杰, 马浩南, 刘霞
cstr: 32037.14.aps.74.20241590

Research progress of regulation of physical properties of two-dimensional materials based on thermal scanning probe lithography

ZHAO Shijie, MA Haonan, LIU Xia
cstr: 32037.14.aps.74.20241590
PDF
HTML
导出引用
  • 随着微观领域探索的不断深入, 以光刻和各类刻蚀工艺为代表的微纳加工技术已被广泛应用于微米及纳米尺度的结构与器件制造, 推动了集成电路、微纳光电器件、微机电系统等领域的不断革新. 这不仅带动了设备性能的提升, 还为微观物性调控机制的基础科学研究带来了新的机遇. 近年来, 作为一种新兴的微纳加工技术, 扫描热探针技术在二维材料加工、物性调控和纳米级灰度结构制造方面获得了实践应用, 并展现出独特优势. 本文将从扫描热探针技术的原理及特点出发, 分析其在二维材料微纳加工及物性调控领域的最新研究进展, 最后展望该技术的广阔应用前景.
    With the continuous development of micro-scale exploration, micro/nano fabrication technologies, represented by photolithography and various etching processes, have been widely used for fabricating micro- and nanoscale structures and devices. These developments have driven innovation in fields such as integrated circuits, micro-nano optoelectronic devices, and micro-electromechanical systems, while also bringing new opportunities to fundamental scientific research, including the study of microscopic property regulation mechanisms. In recent years, as an emerging micro-nano fabrication technology, thermal scanning probe lithography (t-SPL) has shown promise and unique advantages in applications related to the fabrication and property regulation of two-dimensional materials, as well as the creation of nanoscale grayscale structures. By employing the fabrication methods such as material removal and modification, t-SPL can be used as an advanced technology for regulating two-dimensional material properties, or directly effectively regulating various properties of two-dimensional materials, thereby significantly improving the performance of two-dimensional material devices, or advancing fundamental scientific research on the micro/nano scale. This paper starts with the principles and characteristics of t-SPL, analyzes the recent research progress of the micro-nano fabrication and property modulation of two-dimensional materials, including several researches achieved by using t-SPL as the core fabrication methods, such as direct patterning, strain engineering, and reaction kinetics research of two-dimensional materials. Finally, the challenges in t-SPL technology are summarized, the corresponding possible solutions are proposed, and the promising applications of this technology are explored.
      通信作者: 刘霞, xia.liu@bit.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFB3405600)和国家自然科学基金(批准号: 62274013)资助的课题.
      Corresponding author: LIU Xia, xia.liu@bit.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFB3405600) and the National Natural Science Foundation of China (Grant No. 62274013).
    [1]

    Mamin H J, Rugar D 1992 Appl. Phys. Lett. 61 1003Google Scholar

    [2]

    Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz M A, Rothuizen H E, Stutz R, Binnig G K 2002 IEEE Trans. Nanotechnol. 1 39Google Scholar

    [3]

    Howell S T, Grushina A, Holzner F, Brugger J 2020 Microsyst. Nanoeng. 6 21Google Scholar

    [4]

    Paul P C, Knoll A W, Holzner F, Despont M, Duerig U 2011 Nanotechnology 22 275306Google Scholar

    [5]

    Lloyd D, Liu X H, Christophe J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K, Bunch J S 2016 Nano Lett. 16 5836Google Scholar

    [6]

    Palacios-Berraquero C, Kara D M, Montblanch A R P, Barbone M, Latawiec P, Yoon D, Ott A K, Loncar M, Ferrari A C, Atatüre M 2017 Nat. Commun. 8 15093Google Scholar

    [7]

    Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, Kaiser U 2012 Phys. Rev. Lett. 108 196102Google Scholar

    [8]

    Park J B, Yoo J H, Grigoropoulos C P 2012 Appl. Phys. Lett. 101 043110Google Scholar

    [9]

    Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar

    [10]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [11]

    Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020 Nano Lett. 20 8250Google Scholar

    [12]

    Kirchner R, Guzenko V A, Schift H 2019 Adv. Opt. Technol. 8 175Google Scholar

    [13]

    Erbas B, Conde-Rubio A, Liu X, Pernollet J, Wang Z Y, Bertsch A, Penedo M, Fantner G, Banerjee M, Kis A, Boero G, Brugger J 2024 Microsyst. Nanoeng. 10 28Google Scholar

    [14]

    Liu X, Erbas B, Conde-Rubio A, Rivano N, Wang Z, Jiang J, Bienz S, Kumar N, Sohier T, Penedo M, Banerjee M, Fantner G, Zenobi R, Marzari N, Kis A, Boero G, Brugger J 2024 Nat. Commun. 15 6934Google Scholar

    [15]

    Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K, Yakes M K, Laracuente A R, Dai Z T, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E 2010 Science 328 1373Google Scholar

    [16]

    Carroll K M, Lu X, Kim S, Gao Y, Kim H J, Somnath S, Polloni L, Sordan R, King W P, Curtis J E, Riedo E 2014 Nanoscale 6 1299Google Scholar

    [17]

    Raghuraman S, Elinski M B, Batteas J D, Felts J R 2017 Nano Lett. 17 2111Google Scholar

    [18]

    Zheng X R, Calò A, Cao T F, Liu X Y, Huang Z J, Das P M, Drndic M, Albisetti E, Lavini F, Li T D, Narang V, King W P, Harrold J W, Vittadello M, Aruta C, Shahrjerdi D, Riedo E 2020 Nat. Commun. 11 3463Google Scholar

    [19]

    Lassaline N, Thureja D, Petter D, Murthy P A, Knoll A W, Norris D J 2021 ACS Nano Lett. 21 8175Google Scholar

    [20]

    Cheng G, Wang Z, Man Z, Chen M, Bian J, Lu Z, Zhang W 2022 ACS Appl. Nano Mater. 5 5756Google Scholar

    [21]

    Wu H, Wang Y, Yu J, Pan J, Cho H, Gupta A, Goropceanu I, Zhou C, Park J, Talapin D V 2022 J. Am. Chem. Soc. 144 10495Google Scholar

    [22]

    Rostami M, Markovic A, Wang Y, Pernollet J, Zhang X S, Liu X, Brugger J 2024 Adv. Sci. 11 2303518Google Scholar

    [23]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [24]

    Ren H T, Zhang L, Xiang G 2020 Appl. Phys. Lett. 116 012401Google Scholar

    [25]

    Bai K K, Zhou Y, Zheng H, Meng L, Peng H L, Liu Z F, Nie J C, He L 2014 Phys. Rev. Lett. 113 086102Google Scholar

  • 图 1  t-SPL加工方式原理图

    Fig. 1.  Schematic diagram of t-SPL manufacturing method.

    图 2  t-SPL在纳米尺度上切割二维材料示意图[9]

    Fig. 2.  Schematic illustration of t-SPL cutting 2D materials at the nanoscale[9].

    图 3  t-SPL在二维材料表面产生纳米压痕示意图[11]

    Fig. 3.  Schematic illustration of the generation of nanoscale indentations on the surface of 2D materials by t-SPL[11].

    图 4  基于灰度结构衬底的MoS2晶体管结构示意图[14]

    Fig. 4.  Schematic illustration of MoS2 transistor structure based on gray-scale structural substrate[14].

    表 1  t-SPL工艺相关研究的领域及应用

    Table 1.  Research fields and applications related to t-SPL technology.

    t-SPL工艺类型参考文献领域应用
    减材[1]微纳加工激光加热探针的早期纳米压痕研究
    减材[2]微纳加工IBM千足虫计划, t-SPL工艺雏形
    减材[4]微纳加工高速刻写工艺, t-SPL刻写速度优化
    减材[9]微纳加工使用t-SPL直接对二维材料进行图案化
    减材[13]微纳加工t-SPL制造灰度结构并转移至硅衬底
    减材[14]应变工程利用灰度结构衬底实现二维材料应变工程, 提升器件性能
    减材[19]纳米光学与光子学基于 hBN 的高分辨率灰度光学微结构
    减材[20]量子点调控纳米孔量子点定位, 亚纳米量子位设计
    减材[22]微纳加工大面积热敏抗蚀剂的快速图案化
    改性[15]表面化学与电子学氧化石墨烯还原反应, 生成导电图案
    改性[16]表面化学氧化石墨烯的导电纳米线制造
    改性[17]反应动力学热化学反应研究, 摩擦系数调控
    改性[18]缺陷工程二维材料掺杂(p型、n型), 图案化缺陷引入
    其他[11]应变工程利用t-SPL纳米压痕调控二维材料物性
    下载: 导出CSV
  • [1]

    Mamin H J, Rugar D 1992 Appl. Phys. Lett. 61 1003Google Scholar

    [2]

    Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz M A, Rothuizen H E, Stutz R, Binnig G K 2002 IEEE Trans. Nanotechnol. 1 39Google Scholar

    [3]

    Howell S T, Grushina A, Holzner F, Brugger J 2020 Microsyst. Nanoeng. 6 21Google Scholar

    [4]

    Paul P C, Knoll A W, Holzner F, Despont M, Duerig U 2011 Nanotechnology 22 275306Google Scholar

    [5]

    Lloyd D, Liu X H, Christophe J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K, Bunch J S 2016 Nano Lett. 16 5836Google Scholar

    [6]

    Palacios-Berraquero C, Kara D M, Montblanch A R P, Barbone M, Latawiec P, Yoon D, Ott A K, Loncar M, Ferrari A C, Atatüre M 2017 Nat. Commun. 8 15093Google Scholar

    [7]

    Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, Kaiser U 2012 Phys. Rev. Lett. 108 196102Google Scholar

    [8]

    Park J B, Yoo J H, Grigoropoulos C P 2012 Appl. Phys. Lett. 101 043110Google Scholar

    [9]

    Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar

    [10]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [11]

    Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020 Nano Lett. 20 8250Google Scholar

    [12]

    Kirchner R, Guzenko V A, Schift H 2019 Adv. Opt. Technol. 8 175Google Scholar

    [13]

    Erbas B, Conde-Rubio A, Liu X, Pernollet J, Wang Z Y, Bertsch A, Penedo M, Fantner G, Banerjee M, Kis A, Boero G, Brugger J 2024 Microsyst. Nanoeng. 10 28Google Scholar

    [14]

    Liu X, Erbas B, Conde-Rubio A, Rivano N, Wang Z, Jiang J, Bienz S, Kumar N, Sohier T, Penedo M, Banerjee M, Fantner G, Zenobi R, Marzari N, Kis A, Boero G, Brugger J 2024 Nat. Commun. 15 6934Google Scholar

    [15]

    Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K, Yakes M K, Laracuente A R, Dai Z T, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E 2010 Science 328 1373Google Scholar

    [16]

    Carroll K M, Lu X, Kim S, Gao Y, Kim H J, Somnath S, Polloni L, Sordan R, King W P, Curtis J E, Riedo E 2014 Nanoscale 6 1299Google Scholar

    [17]

    Raghuraman S, Elinski M B, Batteas J D, Felts J R 2017 Nano Lett. 17 2111Google Scholar

    [18]

    Zheng X R, Calò A, Cao T F, Liu X Y, Huang Z J, Das P M, Drndic M, Albisetti E, Lavini F, Li T D, Narang V, King W P, Harrold J W, Vittadello M, Aruta C, Shahrjerdi D, Riedo E 2020 Nat. Commun. 11 3463Google Scholar

    [19]

    Lassaline N, Thureja D, Petter D, Murthy P A, Knoll A W, Norris D J 2021 ACS Nano Lett. 21 8175Google Scholar

    [20]

    Cheng G, Wang Z, Man Z, Chen M, Bian J, Lu Z, Zhang W 2022 ACS Appl. Nano Mater. 5 5756Google Scholar

    [21]

    Wu H, Wang Y, Yu J, Pan J, Cho H, Gupta A, Goropceanu I, Zhou C, Park J, Talapin D V 2022 J. Am. Chem. Soc. 144 10495Google Scholar

    [22]

    Rostami M, Markovic A, Wang Y, Pernollet J, Zhang X S, Liu X, Brugger J 2024 Adv. Sci. 11 2303518Google Scholar

    [23]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [24]

    Ren H T, Zhang L, Xiang G 2020 Appl. Phys. Lett. 116 012401Google Scholar

    [25]

    Bai K K, Zhou Y, Zheng H, Meng L, Peng H L, Liu Z F, Nie J C, He L 2014 Phys. Rev. Lett. 113 086102Google Scholar

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [4] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [5] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [6] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [7] 韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧. 表面原子操纵与物性调控研究进展. 物理学报, 2022, 71(12): 128102. doi: 10.7498/aps.71.20220405
    [8] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [9] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [10] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [11] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [12] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [13] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [14] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [15] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [16] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [17] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [18] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [19] 李潇男, 关国荣, 刘忆琨, 梁浩文, 张爱琴, 周建英. 矢量光共焦扫描显微系统纳米标准样品的制备与物理测量精度. 物理学报, 2019, 68(14): 148102. doi: 10.7498/aps.68.20190252
    [20] 刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. 刻划微棱锥抗反射层的GaP太赫兹波发射器. 物理学报, 2012, 61(4): 040703. doi: 10.7498/aps.61.040703
计量
  • 文章访问数:  291
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2024-12-05
  • 上网日期:  2024-12-13

/

返回文章
返回