搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管场效应晶体管的X射线辐照效应

曾天祥 李济芳 郭红霞 马武英 雷志锋 钟向丽 张鸿 王颂文

引用本文:
Citation:

碳纳米管场效应晶体管的X射线辐照效应

曾天祥, 李济芳, 郭红霞, 马武英, 雷志锋, 钟向丽, 张鸿, 王颂文
cstr: 32037.14.aps.74.20241670

X-ray irradiation effects of carbon nanotube field-effect transistors

ZENG Tianxiang, LI Jifang, GUO Hongxia, MA Wuying, LEI Zhifeng, ZHONG Xiangli, ZHANG Hong, WANG Songwen
cstr: 32037.14.aps.74.20241670
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文针对N型和P型碳纳米管场效应晶体管(carbon nanotube field-effect transistor, CNTFET)开展了10 keV-X射线的总剂量效应研究. 结果表明, 不同类型的晶体管在辐照后均出现阈值电压漂移、跨导下降、亚阈值摆幅上升和饱和电流下降的现象; 辐照过程中, 施加浮空偏置的N型器件较开态偏置损伤更严重, 而施加开态偏置的P型器件较浮空偏置损伤更严重; N型器件辐照后回滞宽度减小且随着沟道尺寸的增大总剂量损伤愈发严重. 辐照过程中产生的陷阱电荷是造成器件参数退化的主要原因; 不同类型器件在辐照过程中施加的栅极偏置会影响栅极介质层中陷阱对电子或空穴的捕获, 从而使器件呈现不同的辐射损伤特征; 辐照后N型器件回滞宽度减小可能是因为辐照产生的带负电陷阱电荷阻碍了水分子、OH基团和栅极介质层中陷阱对电子的捕获; 此外, 晶体管的沟道尺寸也会影响辐射响应, 尺寸越大, 辐照过程中栅极介质层中和界面处产生陷阱电荷越多, 导致晶体管损伤更为严重.
    To further understand the patterns and mechanisms of total ionizing dose (TID) radiation damage in carbon nanotube field-effect transistor (CNTFET), the total dose effects of 10 keV X-ray irradiation on N-type and P-type CNTFETs are investigated in this work. The irradiation dose rate is 200 rad(Si)/s, with a cumulative dose of 100 krad(Si) for N-type devices and 90 krad(Si) for P-type devices. The differences in TID effect between N-type and P-type CNTFETs under the conditions of floating gate bias and on-state bias, the influence of irradiation on the hysteresis characteristics of N-type CNTFETs, and the influence of channel sizes on the TID effects of N-type CNTFETs are also explored. The results indicate that both types of transistors, after being irradiated, exhibit the threshold voltage shift, transconductance degradation, increase in subthreshold swing, and decrease in saturation current. In the irradiation process, N-type devices under floating gate bias suffer more severe damage than those under on-state bias, while P-type devices under on-state bias experience more significant damage than those under floating gate bias. The hysteresis widths of N-type devices decrease after being irradiated, and the TID damage becomes more severe with the increase of channel dimensions. The main reason for the degradation of device parameters is the trap charges generated in the irradiated process. The gate bias applied during irradiation affects the capture of electrons or holes by traps in the gate dielectric, resulting in different radiation damage characteristics for different types of devices. The reduction in the hysteresis width of N-type devices after being irradiated may be attributed to the negatively charged trap charges generated during irradiation, which hinders the capture of electrons by water molecules, OH groups, and traps in the gate dielectric. Moreover, the channel dimensions of the transistors also influence their radiation response: larger channel dimensions result in more trap charges generated in the gate dielectric and at the interface during irradiation, leading to more severe transistor damage.
      通信作者: 郭红霞, guohongxia@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12275230, 12027813)资助的课题.
      Corresponding author: GUO Hongxia, guohongxia@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275230, 12027813).
    [1]

    Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017 Science 355 271Google Scholar

    [2]

    Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar

    [3]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [4]

    Zhu M G, Si J, Zhang Z Y, Peng L M 2018 Adv. Mater. 30 1707068Google Scholar

    [5]

    Yang Y Y, Ding L, Chen H J, Han J, Zhang Z Y, Peng L M 2018 Nano Res. 11 300Google Scholar

    [6]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526Google Scholar

    [7]

    De Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535Google Scholar

    [8]

    刘一凡, 张志勇 2022 物理学报 71 068503Google Scholar

    Liu Y F, Zhang Z Y 2022 Acta Phys. Sin. 71 068503Google Scholar

    [9]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Krasheninnikov A, Nordlund K, Sirviö M, Salonen, E, Keinonen J 2001 Phys. Rev. B 63 245405Google Scholar

    [12]

    Tolvanen A, Kotakoski J, Krasheninnikov A, Nordlund K 2007 Appl. Phys. Lett. 91 173109Google Scholar

    [13]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar

    [14]

    Zhao Y D, Li D Q, Xiao L, Liu J K, Xiao X Y, L G H, Jin Y H, Jiang K L, Wang J P, Fan S S, Li Q Q 2016 Carbon 108 363Google Scholar

    [15]

    Zhang X R, Zhu H P, Peng S A, Xiong G D, Zhu C Y, Huang X N, Cao S R, Zhang J J, Yan Y P, Yao Y, Zhang D Y, Shi J Y, Wang L, Li B, Jin Z 2021 J. Semicond. 42 112002Google Scholar

    [16]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [17]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [18]

    Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994 Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures Moscow, Russia, March 22–25, 1994 p126

    [19]

    Oldham T R, Mclean F B 2002 IEEE T. Nucl. Sci. 50 483

    [20]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE T. Nucl. Sci. 31 1497Google Scholar

    [21]

    Lu P, Zhu M G, Zhao P X, Fan C W, Zhu H P, Gao J T, Y C, Han Z S, Li B, Liu J, Zhang Z Y 2023 ACS Appl. Mater. Interfaces 15 10936Google Scholar

    [22]

    McMorrow J J, Cress C D, Affouda C 2012 ACS Nano 6 5040Google Scholar

    [23]

    Belyakov V V, Pershenkov V S, Zebrev G I, Sogoyan A V, Chumakov A I, Nikiforov A Y, Skorobogatov P K 2003 Russian Microelectron. 32 25Google Scholar

    [24]

    Ni H Z, Li M, Li X H, Zhu X W, Liu H H, Xu M 2022 IEEE T. Electron Dev. 69 1069Google Scholar

    [25]

    Kim W, Javey A, Vermesh O, Wang Q, Li Y M, Dai H J, 2003 Nano Letters 3 193Google Scholar

    [26]

    Chua L L, Zaumseil J, Chang J F, Ou E C, Ho P K, Sirringhaus H, Friend R H 2005 Nature 434 194Google Scholar

    [27]

    Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006 Appl. Phys. Lett. 88 99

    [28]

    Cai X, Gerlach C P, Frisbie C D 2007 J. Phys. Chem. C 111 452Google Scholar

    [29]

    Ha T J, Kiriya D, Chen K, Javey A 2014 ACS Appl. Mater. Interfaces 6 8441Google Scholar

    [30]

    Wang Y W, Wang S, Ye H D, Zhang W H, Xiang L 2023 IEEE T. Dev. Mater. Re. 23 571Google Scholar

  • 图 1  器件结构示意图

    Fig. 1.  Device structure diagram.

    图 2  辐照前后N型器件的电学曲线 (a)转移特性曲线; (b)输出特性曲线

    Fig. 2.  Electrical curves of N-type devices before and after irradiation: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 3  辐照前后P型器件的电学曲线 (a)转移特性曲线; (b)输出特性曲线

    Fig. 3.  Electrical curves of P-type devices before and after irradiation: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 4  辐照前后N型和P型器件的电学参数 (a)跨导; (b)亚阈值摆幅; (c)阈值电压

    Fig. 4.  Electrical parameters of N-type and P-type devices before and after irradiation: (a) Transconductance; (b) subthreshold swing; (c) threshold voltage.

    图 5  不同偏置条件下辐照前后的转移特性曲线 (a) N型器件; (b) P型器件

    Fig. 5.  Transfer characteristic curves before and after irradiation under different bias conditions: (a) N-type devices; (b) P-type devices.

    图 6  辐照前后回滞特性的变化

    Fig. 6.  Changes in hysteresis characteristics before and after irradiation.

    图 7  辐照前后不同沟道尺寸的CNTFET转移曲线

    Fig. 7.  Transfer curves of CNTFET with different channel sizes before and after irradiation.

    图 8  不同沟道尺寸的未辐照CNTFET归一化后的转移特性曲线与跨导

    Fig. 8.  Normalized transfer characteristic curves and transconductance of unirradiated CNTFET with different channel sizes.

    表 1  N型和P型器件辐照前后电学参数变化量

    Table 1.  Changes in electrical parameters of N-type and P-type devices before and after irradiation.

    器件类型 ΔGm/μS 标准差 ΔSS/(mV·dec–1) 标准差 ΔVth/mV 标准差
    N型器件 –0.275 0.02 50 0.015 149 0.025
    P型器件 –1 0.022 20 0.02 –45 0.018
    下载: 导出CSV

    表 2  辐照前后不同沟道尺寸的CNTFET电学参数变化

    Table 2.  Changes in electrical parameters of CNTFET with different channel sizes before and after irradiation.

    宽长比 ΔGm/μS ΔSS/(mV·dec–1) ΔVth/V
    30 µm/5 µm –0.34 52 0.15
    35 µm/5 µm –0.35 53 0.19
    40 µm/5 µm –0.65 60 0.7
    下载: 导出CSV
  • [1]

    Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017 Science 355 271Google Scholar

    [2]

    Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar

    [3]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [4]

    Zhu M G, Si J, Zhang Z Y, Peng L M 2018 Adv. Mater. 30 1707068Google Scholar

    [5]

    Yang Y Y, Ding L, Chen H J, Han J, Zhang Z Y, Peng L M 2018 Nano Res. 11 300Google Scholar

    [6]

    Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526Google Scholar

    [7]

    De Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535Google Scholar

    [8]

    刘一凡, 张志勇 2022 物理学报 71 068503Google Scholar

    Liu Y F, Zhang Z Y 2022 Acta Phys. Sin. 71 068503Google Scholar

    [9]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Krasheninnikov A, Nordlund K, Sirviö M, Salonen, E, Keinonen J 2001 Phys. Rev. B 63 245405Google Scholar

    [12]

    Tolvanen A, Kotakoski J, Krasheninnikov A, Nordlund K 2007 Appl. Phys. Lett. 91 173109Google Scholar

    [13]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar

    [14]

    Zhao Y D, Li D Q, Xiao L, Liu J K, Xiao X Y, L G H, Jin Y H, Jiang K L, Wang J P, Fan S S, Li Q Q 2016 Carbon 108 363Google Scholar

    [15]

    Zhang X R, Zhu H P, Peng S A, Xiong G D, Zhu C Y, Huang X N, Cao S R, Zhang J J, Yan Y P, Yao Y, Zhang D Y, Shi J Y, Wang L, Li B, Jin Z 2021 J. Semicond. 42 112002Google Scholar

    [16]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [17]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [18]

    Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994 Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures Moscow, Russia, March 22–25, 1994 p126

    [19]

    Oldham T R, Mclean F B 2002 IEEE T. Nucl. Sci. 50 483

    [20]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE T. Nucl. Sci. 31 1497Google Scholar

    [21]

    Lu P, Zhu M G, Zhao P X, Fan C W, Zhu H P, Gao J T, Y C, Han Z S, Li B, Liu J, Zhang Z Y 2023 ACS Appl. Mater. Interfaces 15 10936Google Scholar

    [22]

    McMorrow J J, Cress C D, Affouda C 2012 ACS Nano 6 5040Google Scholar

    [23]

    Belyakov V V, Pershenkov V S, Zebrev G I, Sogoyan A V, Chumakov A I, Nikiforov A Y, Skorobogatov P K 2003 Russian Microelectron. 32 25Google Scholar

    [24]

    Ni H Z, Li M, Li X H, Zhu X W, Liu H H, Xu M 2022 IEEE T. Electron Dev. 69 1069Google Scholar

    [25]

    Kim W, Javey A, Vermesh O, Wang Q, Li Y M, Dai H J, 2003 Nano Letters 3 193Google Scholar

    [26]

    Chua L L, Zaumseil J, Chang J F, Ou E C, Ho P K, Sirringhaus H, Friend R H 2005 Nature 434 194Google Scholar

    [27]

    Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006 Appl. Phys. Lett. 88 99

    [28]

    Cai X, Gerlach C P, Frisbie C D 2007 J. Phys. Chem. C 111 452Google Scholar

    [29]

    Ha T J, Kiriya D, Chen K, Javey A 2014 ACS Appl. Mater. Interfaces 6 8441Google Scholar

    [30]

    Wang Y W, Wang S, Ye H D, Zhang W H, Xiang L 2023 IEEE T. Dev. Mater. Re. 23 571Google Scholar

  • [1] 彭治钢, 白豪杰, 刘方, 李洋, 何欢, 李培, 贺朝会, 李永宏. 质子累积辐照效应对CMOS图像传感器饱和输出的影响. 物理学报, 2025, 74(2): 024203. doi: 10.7498/aps.74.20241352
    [2] 朱文璐, 郭红霞, 李洋帆, 马武英, 张凤祁, 白如雪, 钟向丽, 李济芳, 曹彦辉, 琚安安. 双沟槽SiC MOSFET总剂量效应. 物理学报, 2025, 74(5): 056101. doi: 10.7498/aps.74.20241641
    [3] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [4] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [5] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [6] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [7] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [8] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [9] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [10] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [11] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [12] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [13] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [14] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [15] 周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光. 辐照下背栅偏置对部分耗尽型绝缘层上硅器件背栅效应影响及机理分析. 物理学报, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [16] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [17] 刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉. 基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究. 物理学报, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [18] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [19] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
计量
  • 文章访问数:  530
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 修回日期:  2024-12-23
  • 上网日期:  2025-01-08
  • 刊出日期:  2025-03-05

/

返回文章
返回