-
单层的铁电半导体Ga2S3因具有卓越的延展性, 极高的载流子迁移率以及独特的面外非对称极化特性而备受关注. 利用铁电半导体Ga2S3面外非对称极化特性, 本研究构建了T-NbTe2/Ga2S3铁电异质结, 并选用了两个能量最稳定且Ga2S3极化强度方向不同的异质结PD1 ($ \boldsymbol P_{\downarrow}$)和PU2 ($\boldsymbol P_{\uparrow} $), 对其结构稳定性和电接触性质进行相关研究. 结果表明, 由于Ga2S3极化强度方向的不同, 本征态下的异质结PD1和PU2分别形成了N型肖特基接触和P型肖特基接触. 改变铁电半导体Ga2S3的极化特性, 能改变铁电异质结T-NbTe2/Ga2S3肖特基势垒的接触类型, 这为设计多功能的肖特基器件提供了一种实用的方法. 对于异质结PD1和PU2, 施加外加正电场或者双轴应变拉伸, 都能够有效地实现肖特基接触至欧姆接触的转变. 这些结果为高性能电接触界面的二维铁电纳米器件提供了理论参考.A monolayer ferroelectric semiconductor, Ga2S3, has received extensive attention because of its outstanding ductility, extremely high carrier mobility and unique out-of-plane asymmetric polarization characteristics. In this work, T-NbTe2/Ga2S3 ferroelectric heterojunctions are constructed using out-of-plane asymmetric polarization characteristics of Ga2S3. The structural stability, preparation possibility and electrical contact properties for various ferroelectric heterojunction T-NbTe2/Ga2S3 ferroelectric heterojunctions with the different polarization directions of Ga2S3 are systematically studied by the first-principles calculations. It is found that heterojunctions T-NbTe2/Ga2S3 exhibit sensitive responses to out-of-plane asymmetric polarization characteristics of Ga2S3. The two heterojunctions with the most stable energy, PD1 ($ \boldsymbol P_{\downarrow}$) and PU2 ($ \boldsymbol P_{\uparrow} $), in the intrinsic state form N-type and P-type Schottky contact, respectively. The polarization characteristics of the ferroelectric semiconductor Ga2S3 are dependent on the contact type of the Schottky barrier in the ferroelectric heterojunction T-NbTe2/Ga2S3, which provides a practical approach for designing multifunctional Schottky devices. Specifically, the electrical contact depends on the external electric field. For the heterojunction, PD1 (and PU2), the contact can transition from Schottky contact to Ohmic contact at an electric field strength of +0.5 V/Å (+0.6 V/Å). Besides electric field, the contact properties of both heterojunctions PD1 and PU2 may also be tuned by an external biaxial strain. For the heterojunction, PD1, the contact can transition from Schottky contact to Ohmic contact at a biaxial strain tensile of 8%. And for the heterojunction, PU2, the contact can transition from P-type Schottky contact to N-type Schottky contact at a biaxial strain tensile of 2%, then from N-type Schottky contact to Ohmic contact at a strain tensile of 10%. These results provide a theoretical reference for designing two-dimensional ferroelectric nanodevices with high-performance electrical contact interfaces.
-
Keywords:
- metal-semiconductor heterojunction /
- Schottky contact /
- Ohmic contact /
- electrical contact
[1] Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 636 157766
Google Scholar
[2] Zheng Y, Gao J, Han C, Chen W 2021 Cell Rep. Phys. Sci. 2 100298
Google Scholar
[3] Chen S Y, Wang S, Wang C, Wang Z C, Liu Q 2022 Nano Today 42 101372
Google Scholar
[4] Zheng S, Lu H C, Liu H, Liu D M, Robertson J 2019 Nanoscale 11 4811
Google Scholar
[5] Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052
Google Scholar
[6] Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195
Google Scholar
[7] Nguyen H T, Obeid M M, Bafekry A, Idrees M, Vu T V, Phuc H V, Hieu N N, Hoa L T, Amin B, Nguyen C V 2020 Phys. Rev. B 102 075414
Google Scholar
[8] Cao L M, Ang Y S, Wu Q Y, Ang L K 2019 Appl. Phys. Lett. 115 241601
Google Scholar
[9] Zheng Y L, Tang X, Wang W L, Jin L, Li G Q 2021 Adv. Funct. Mater. 31 2008307
Google Scholar
[10] Jastrzebskia C, Jastrzebskib D J, Kozaka V, Pietakb K, Wierzbicki M, Gebicki W 2019 Mater. Sci. Semicond. Process. 94 80
Google Scholar
[11] Dénoue K, Cheviré F, Calers C, Verger L, Coq D L, Calvez L 2020 J. Solid State Chem. 292 121743
Google Scholar
[12] Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303
Google Scholar
[13] Liu X H, Mao Y L 2024 Appl. Phys. Lett. 125 043102
Google Scholar
[14] Khusayfan N M, Khanfar H K 2018 Results Phys. 10 332
Google Scholar
[15] Khusayfan N M, Qasrawi A F, Khanfar H K 2018 Results Phys. 8 1239
Google Scholar
[16] Shang X X, Zhang Y L, Li T, Zhang H N, Zou X F, Wageh S, Al-Ghamdi A A, Zhang H, Si S H, Li D W 2024 J. Materiomics 10 355
Google Scholar
[17] Dong J Z, Li C S, Yang J, Chen B B, Song H J, Chen J S, Peng W X 2016 Cryst. Res. Technol. 51 671
Google Scholar
[18] Suonan Z X, Wu H X, Mi S, Xu H, Xu H W, Zhang H Y, Pang F 2024 J. Cryst. Growth 648 127891
Google Scholar
[19] Behera S K, Ramamurthy P C 2024 New J. Chem 48 15493
Google Scholar
[20] Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983
Google Scholar
[21] Li H, ZhangY F, Liu F B, Lu J 2024 Nanoscale 16 18005
Google Scholar
[22] Fang S B, Li Q H, Yang C, Wu B C, Liu S Q, Yang J, Ma J C, Yang Z M, Tang K C, Lu J 2023 Phys. Rev. Mater. 7 084412
Google Scholar
[23] Han J N, Cao S G, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 045002
Google Scholar
[24] Xu Y H, Han J N, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504
Google Scholar
[25] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
Google Scholar
[26] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[27] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993
Google Scholar
[28] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens Matter 14 2745
Google Scholar
[29] Grimme S 2006 J. Comput. Chem. 27 1787
Google Scholar
[30] Xu Z, Luo W D, Guo S Y, Liu S Z 2024 ACS Appl. Mater. Interfaces 16 40123
Google Scholar
[31] Ramezani H R, Şaşıoğlu E, Hadipour H, Soleimani H T, Friedrich C, Blügel S, Mertig I 2024 Phys. Rev. B 109 125108
Google Scholar
[32] Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312
Google Scholar
[33] Hieu N N, Phuc H V, Kartamyshev A I, Vu T V 2022 Phys. Rev. B 105 075402
Google Scholar
[34] Jin H, Wei T, Huang B 2024 Nano Lett. 24 10892
[35] Xia J L, Gu Y X, Mai J, Hu T Y, Wang Q K, Xie C, Wu Y K, Wang X 2023 Heliyon 9 20619
Google Scholar
[36] Sun N, Qi S M, Zhou B Z, Mi W B, Wang X C 2021 J. Alloys Compd. 875 160048
Google Scholar
[37] Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990
Google Scholar
[38] Zhao C S, Li Z H, Zhang Z H 2024 Appl. Surf. Sci. 672 160859
Google Scholar
[39] Wang Q H, Li H, Si L N, Dou Z L, Yan H J, Yang Y, Liu F B 2023 Mater. Today Commun. 35 105724
[40] Zhang W X, Yin Y, He C 2020 Phys. Chem. Chem. Phys. 22 26231
Google Scholar
[41] Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095
Google Scholar
[42] Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B, Vu T V 2020 Phys. Rev. B 101 235419
Google Scholar
[43] Vicario C, Monoszlai B, Hauri C P 2014 Phys. Rev. Lett. 112 213901
Google Scholar
-
图 1 单层原子结构 (a) T-NbTe2, (b) Ga2S3 (极化向下)和(c) Ga2S3 (极化向下)的正视图和侧视图. 红色箭头表示极化方向. 单层(d) T-NbTe2和(e) Ga2S3能带结构
Fig. 1. Top-view and side-view of single-layer atomic structures: (a) T-NbTe2; (b) Ga2S3 (polarized downward); (c) Ga2S3 (polarized upward). The red arrow indicates the polarization direction. Energy band structures of single layers: (d) T-NbTe2; (e) Ga2S3.
图 2 (a)异质结的6种堆垛方式, 阴影为两种最稳定的堆垛结构; (b)优化后各堆垛的结合能(柱状图)以及层间距(蓝色点); (c) PD1和PU2的电子定位函数
Fig. 2. (a) The six stacking sequences of heterojunctions, with the shaded ones representing the two most stable stacking structures; (b) pptimized binding energy (presented as a bar chart) and interlayer spacing (blue dots) for each stacking sequence; (c) the electron localization function of PD1 and PU2.
图 4 (a)异质结PD1和PU2的投影能带结构; (b)异质结PD1和PU2的空间电荷密度差. 插图中红色(蓝色)表示电子积累(消耗), 等值面设为0.0005 e/Å3
Fig. 4. (a) Projected band structures of heterojunctions PD1 and PU2; (b) the spatial charge density difference for heterojunctions PD1 and PU2. In the illustration, the red (blue) represent electron accumulation (depletion), and the isosurface is set to 0.0005 e/Å3
图 5 (a) PD1和PU2的肖特基势垒高度随外加电场的变化曲线; (b) 异质结PD1在外加电场下的能带结构; (c) 异质结PU2在外加电场下的能带结构. 红色表示Ga2S3, 蓝绿色表示T-NbTe2
Fig. 5. (a) Variation curves of the Schottky barrier height of PD1 and PU2 with the applied electric field; (b) band structure of the heterojunction PD1 under the applied electric field; (c) band structure of the heterojunction PU2 under the applied electric field. The red lines represent Ga2S3, and the cyan lines represent T-NbTe2.
图 6 (a)异质结PD1和PU2的肖特基势垒高度随双轴应变的变化曲线; (b)异质结PD1在应变下的能带结构; (c)异质结PU2在应变下的能带结构. 红色表示Ga2S3, 蓝绿色表示T-NbTe2
Fig. 6. (a) Trend of SBH of heterojunction PD1 and PU2 with the biaxial strain; (b) band structure of the heterojunction PD1 under strains; (c) band structure of the heterojunction PU2 under strain. The red lines represent Ga2S3, and the cyan lines represent T-NbTe2.
-
[1] Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 636 157766
Google Scholar
[2] Zheng Y, Gao J, Han C, Chen W 2021 Cell Rep. Phys. Sci. 2 100298
Google Scholar
[3] Chen S Y, Wang S, Wang C, Wang Z C, Liu Q 2022 Nano Today 42 101372
Google Scholar
[4] Zheng S, Lu H C, Liu H, Liu D M, Robertson J 2019 Nanoscale 11 4811
Google Scholar
[5] Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052
Google Scholar
[6] Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195
Google Scholar
[7] Nguyen H T, Obeid M M, Bafekry A, Idrees M, Vu T V, Phuc H V, Hieu N N, Hoa L T, Amin B, Nguyen C V 2020 Phys. Rev. B 102 075414
Google Scholar
[8] Cao L M, Ang Y S, Wu Q Y, Ang L K 2019 Appl. Phys. Lett. 115 241601
Google Scholar
[9] Zheng Y L, Tang X, Wang W L, Jin L, Li G Q 2021 Adv. Funct. Mater. 31 2008307
Google Scholar
[10] Jastrzebskia C, Jastrzebskib D J, Kozaka V, Pietakb K, Wierzbicki M, Gebicki W 2019 Mater. Sci. Semicond. Process. 94 80
Google Scholar
[11] Dénoue K, Cheviré F, Calers C, Verger L, Coq D L, Calvez L 2020 J. Solid State Chem. 292 121743
Google Scholar
[12] Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303
Google Scholar
[13] Liu X H, Mao Y L 2024 Appl. Phys. Lett. 125 043102
Google Scholar
[14] Khusayfan N M, Khanfar H K 2018 Results Phys. 10 332
Google Scholar
[15] Khusayfan N M, Qasrawi A F, Khanfar H K 2018 Results Phys. 8 1239
Google Scholar
[16] Shang X X, Zhang Y L, Li T, Zhang H N, Zou X F, Wageh S, Al-Ghamdi A A, Zhang H, Si S H, Li D W 2024 J. Materiomics 10 355
Google Scholar
[17] Dong J Z, Li C S, Yang J, Chen B B, Song H J, Chen J S, Peng W X 2016 Cryst. Res. Technol. 51 671
Google Scholar
[18] Suonan Z X, Wu H X, Mi S, Xu H, Xu H W, Zhang H Y, Pang F 2024 J. Cryst. Growth 648 127891
Google Scholar
[19] Behera S K, Ramamurthy P C 2024 New J. Chem 48 15493
Google Scholar
[20] Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983
Google Scholar
[21] Li H, ZhangY F, Liu F B, Lu J 2024 Nanoscale 16 18005
Google Scholar
[22] Fang S B, Li Q H, Yang C, Wu B C, Liu S Q, Yang J, Ma J C, Yang Z M, Tang K C, Lu J 2023 Phys. Rev. Mater. 7 084412
Google Scholar
[23] Han J N, Cao S G, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 045002
Google Scholar
[24] Xu Y H, Han J N, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504
Google Scholar
[25] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
Google Scholar
[26] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[27] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993
Google Scholar
[28] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens Matter 14 2745
Google Scholar
[29] Grimme S 2006 J. Comput. Chem. 27 1787
Google Scholar
[30] Xu Z, Luo W D, Guo S Y, Liu S Z 2024 ACS Appl. Mater. Interfaces 16 40123
Google Scholar
[31] Ramezani H R, Şaşıoğlu E, Hadipour H, Soleimani H T, Friedrich C, Blügel S, Mertig I 2024 Phys. Rev. B 109 125108
Google Scholar
[32] Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312
Google Scholar
[33] Hieu N N, Phuc H V, Kartamyshev A I, Vu T V 2022 Phys. Rev. B 105 075402
Google Scholar
[34] Jin H, Wei T, Huang B 2024 Nano Lett. 24 10892
[35] Xia J L, Gu Y X, Mai J, Hu T Y, Wang Q K, Xie C, Wu Y K, Wang X 2023 Heliyon 9 20619
Google Scholar
[36] Sun N, Qi S M, Zhou B Z, Mi W B, Wang X C 2021 J. Alloys Compd. 875 160048
Google Scholar
[37] Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990
Google Scholar
[38] Zhao C S, Li Z H, Zhang Z H 2024 Appl. Surf. Sci. 672 160859
Google Scholar
[39] Wang Q H, Li H, Si L N, Dou Z L, Yan H J, Yang Y, Liu F B 2023 Mater. Today Commun. 35 105724
[40] Zhang W X, Yin Y, He C 2020 Phys. Chem. Chem. Phys. 22 26231
Google Scholar
[41] Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095
Google Scholar
[42] Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B, Vu T V 2020 Phys. Rev. B 101 235419
Google Scholar
[43] Vicario C, Monoszlai B, Hauri C P 2014 Phys. Rev. Lett. 112 213901
Google Scholar
计量
- 文章访问数: 325
- PDF下载量: 7
- 被引次数: 0