搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电异质结T-NbTe2/Ga2S3的接触性质及调控

孙智玄 赵长松 程芳

引用本文:
Citation:

铁电异质结T-NbTe2/Ga2S3的接触性质及调控

孙智玄, 赵长松, 程芳
cstr: 32037.14.aps.74.20241705

Control of contact properties in ferroelectric heterojunction T-NbTe2/Ga2S3

SUN Zhixuan, ZHAO Changsong, CHENG Fang
cstr: 32037.14.aps.74.20241705
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 单层的铁电半导体Ga2S3因具有卓越的延展性, 极高的载流子迁移率以及独特的面外非对称极化特性而备受关注. 利用铁电半导体Ga2S3面外非对称极化特性, 本研究构建了T-NbTe2/Ga2S3铁电异质结, 并选用了两个能量最稳定且Ga2S3极化强度方向不同的异质结PD1 ($ \boldsymbol P_{\downarrow}$)和PU2 ($\boldsymbol P_{\uparrow} $), 对其结构稳定性和电接触性质进行相关研究. 结果表明, 由于Ga2S3极化强度方向的不同, 本征态下的异质结PD1和PU2分别形成了N型肖特基接触和P型肖特基接触. 改变铁电半导体Ga2S3的极化特性, 能改变铁电异质结T-NbTe2/Ga2S3肖特基势垒的接触类型, 这为设计多功能的肖特基器件提供了一种实用的方法. 对于异质结PD1和PU2, 施加外加正电场或者双轴应变拉伸, 都能够有效地实现肖特基接触至欧姆接触的转变. 这些结果为高性能电接触界面的二维铁电纳米器件提供了理论参考.
    A monolayer ferroelectric semiconductor, Ga2S3, has received extensive attention because of its outstanding ductility, extremely high carrier mobility and unique out-of-plane asymmetric polarization characteristics. In this work, T-NbTe2/Ga2S3 ferroelectric heterojunctions are constructed using out-of-plane asymmetric polarization characteristics of Ga2S3. The structural stability, preparation possibility and electrical contact properties for various ferroelectric heterojunction T-NbTe2/Ga2S3 ferroelectric heterojunctions with the different polarization directions of Ga2S3 are systematically studied by the first-principles calculations. It is found that heterojunctions T-NbTe2/Ga2S3 exhibit sensitive responses to out-of-plane asymmetric polarization characteristics of Ga2S3. The two heterojunctions with the most stable energy, PD1 ($ \boldsymbol P_{\downarrow}$) and PU2 ($ \boldsymbol P_{\uparrow} $), in the intrinsic state form N-type and P-type Schottky contact, respectively. The polarization characteristics of the ferroelectric semiconductor Ga2S3 are dependent on the contact type of the Schottky barrier in the ferroelectric heterojunction T-NbTe2/Ga2S3, which provides a practical approach for designing multifunctional Schottky devices. Specifically, the electrical contact depends on the external electric field. For the heterojunction, PD1 (and PU2), the contact can transition from Schottky contact to Ohmic contact at an electric field strength of +0.5 V/Å (+0.6 V/Å). Besides electric field, the contact properties of both heterojunctions PD1 and PU2 may also be tuned by an external biaxial strain. For the heterojunction, PD1, the contact can transition from Schottky contact to Ohmic contact at a biaxial strain tensile of 8%. And for the heterojunction, PU2, the contact can transition from P-type Schottky contact to N-type Schottky contact at a biaxial strain tensile of 2%, then from N-type Schottky contact to Ohmic contact at a strain tensile of 10%. These results provide a theoretical reference for designing two-dimensional ferroelectric nanodevices with high-performance electrical contact interfaces.
      通信作者: 程芳, chengfang@csust.edu.cn
    • 基金项目: 柔性电子材料基因工程湖南省重点实验室资助的课题.
      Corresponding author: CHENG Fang, chengfang@csust.edu.cn
    • Funds: Project supported by the Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, China.
    [1]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 636 157766Google Scholar

    [2]

    Zheng Y, Gao J, Han C, Chen W 2021 Cell Rep. Phys. Sci. 2 100298Google Scholar

    [3]

    Chen S Y, Wang S, Wang C, Wang Z C, Liu Q 2022 Nano Today 42 101372Google Scholar

    [4]

    Zheng S, Lu H C, Liu H, Liu D M, Robertson J 2019 Nanoscale 11 4811Google Scholar

    [5]

    Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar

    [6]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195Google Scholar

    [7]

    Nguyen H T, Obeid M M, Bafekry A, Idrees M, Vu T V, Phuc H V, Hieu N N, Hoa L T, Amin B, Nguyen C V 2020 Phys. Rev. B 102 075414Google Scholar

    [8]

    Cao L M, Ang Y S, Wu Q Y, Ang L K 2019 Appl. Phys. Lett. 115 241601Google Scholar

    [9]

    Zheng Y L, Tang X, Wang W L, Jin L, Li G Q 2021 Adv. Funct. Mater. 31 2008307Google Scholar

    [10]

    Jastrzebskia C, Jastrzebskib D J, Kozaka V, Pietakb K, Wierzbicki M, Gebicki W 2019 Mater. Sci. Semicond. Process. 94 80Google Scholar

    [11]

    Dénoue K, Cheviré F, Calers C, Verger L, Coq D L, Calvez L 2020 J. Solid State Chem. 292 121743Google Scholar

    [12]

    Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303Google Scholar

    [13]

    Liu X H, Mao Y L 2024 Appl. Phys. Lett. 125 043102Google Scholar

    [14]

    Khusayfan N M, Khanfar H K 2018 Results Phys. 10 332Google Scholar

    [15]

    Khusayfan N M, Qasrawi A F, Khanfar H K 2018 Results Phys. 8 1239Google Scholar

    [16]

    Shang X X, Zhang Y L, Li T, Zhang H N, Zou X F, Wageh S, Al-Ghamdi A A, Zhang H, Si S H, Li D W 2024 J. Materiomics 10 355Google Scholar

    [17]

    Dong J Z, Li C S, Yang J, Chen B B, Song H J, Chen J S, Peng W X 2016 Cryst. Res. Technol. 51 671Google Scholar

    [18]

    Suonan Z X, Wu H X, Mi S, Xu H, Xu H W, Zhang H Y, Pang F 2024 J. Cryst. Growth 648 127891Google Scholar

    [19]

    Behera S K, Ramamurthy P C 2024 New J. Chem 48 15493Google Scholar

    [20]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [21]

    Li H, ZhangY F, Liu F B, Lu J 2024 Nanoscale 16 18005Google Scholar

    [22]

    Fang S B, Li Q H, Yang C, Wu B C, Liu S Q, Yang J, Ma J C, Yang Z M, Tang K C, Lu J 2023 Phys. Rev. Mater. 7 084412Google Scholar

    [23]

    Han J N, Cao S G, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 045002Google Scholar

    [24]

    Xu Y H, Han J N, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504Google Scholar

    [25]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [28]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens Matter 14 2745Google Scholar

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [30]

    Xu Z, Luo W D, Guo S Y, Liu S Z 2024 ACS Appl. Mater. Interfaces 16 40123Google Scholar

    [31]

    Ramezani H R, Şaşıoğlu E, Hadipour H, Soleimani H T, Friedrich C, Blügel S, Mertig I 2024 Phys. Rev. B 109 125108Google Scholar

    [32]

    Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312Google Scholar

    [33]

    Hieu N N, Phuc H V, Kartamyshev A I, Vu T V 2022 Phys. Rev. B 105 075402Google Scholar

    [34]

    Jin H, Wei T, Huang B 2024 Nano Lett. 24 10892

    [35]

    Xia J L, Gu Y X, Mai J, Hu T Y, Wang Q K, Xie C, Wu Y K, Wang X 2023 Heliyon 9 20619Google Scholar

    [36]

    Sun N, Qi S M, Zhou B Z, Mi W B, Wang X C 2021 J. Alloys Compd. 875 160048Google Scholar

    [37]

    Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990Google Scholar

    [38]

    Zhao C S, Li Z H, Zhang Z H 2024 Appl. Surf. Sci. 672 160859Google Scholar

    [39]

    Wang Q H, Li H, Si L N, Dou Z L, Yan H J, Yang Y, Liu F B 2023 Mater. Today Commun. 35 105724

    [40]

    Zhang W X, Yin Y, He C 2020 Phys. Chem. Chem. Phys. 22 26231Google Scholar

    [41]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095Google Scholar

    [42]

    Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B, Vu T V 2020 Phys. Rev. B 101 235419Google Scholar

    [43]

    Vicario C, Monoszlai B, Hauri C P 2014 Phys. Rev. Lett. 112 213901Google Scholar

  • 图 1  单层原子结构 (a) T-NbTe2, (b) Ga2S3 (极化向下)和(c) Ga2S3 (极化向下)的正视图和侧视图. 红色箭头表示极化方向. 单层(d) T-NbTe2和(e) Ga2S3能带结构

    Fig. 1.  Top-view and side-view of single-layer atomic structures: (a) T-NbTe2; (b) Ga2S3 (polarized downward); (c) Ga2S3 (polarized upward). The red arrow indicates the polarization direction. Energy band structures of single layers: (d) T-NbTe2; (e) Ga2S3.

    图 2  (a)异质结的6种堆垛方式, 阴影为两种最稳定的堆垛结构; (b)优化后各堆垛的结合能(柱状图)以及层间距(蓝色点); (c) PD1和PU2的电子定位函数

    Fig. 2.  (a) The six stacking sequences of heterojunctions, with the shaded ones representing the two most stable stacking structures; (b) pptimized binding energy (presented as a bar chart) and interlayer spacing (blue dots) for each stacking sequence; (c) the electron localization function of PD1 and PU2.

    图 3  300 K的(a) PD1和(b) PU2的AIMD模拟; (c) PD1和(d) PU2的声子谱

    Fig. 3.  AIMD simulation of at 300 K (a) PD1 and (b) PU2; the phonon spectra of (c) PD1 and (d) PU2.

    图 4  (a)异质结PD1和PU2的投影能带结构; (b)异质结PD1和PU2的空间电荷密度差. 插图中红色(蓝色)表示电子积累(消耗), 等值面设为0.0005 e3

    Fig. 4.  (a) Projected band structures of heterojunctions PD1 and PU2; (b) the spatial charge density difference for heterojunctions PD1 and PU2. In the illustration, the red (blue) represent electron accumulation (depletion), and the isosurface is set to 0.0005 e3

    图 5  (a) PD1和PU2的肖特基势垒高度随外加电场的变化曲线; (b) 异质结PD1在外加电场下的能带结构; (c) 异质结PU2在外加电场下的能带结构. 红色表示Ga2S3, 蓝绿色表示T-NbTe2

    Fig. 5.  (a) Variation curves of the Schottky barrier height of PD1 and PU2 with the applied electric field; (b) band structure of the heterojunction PD1 under the applied electric field; (c) band structure of the heterojunction PU2 under the applied electric field. The red lines represent Ga2S3, and the cyan lines represent T-NbTe2.

    图 6  (a)异质结PD1和PU2的肖特基势垒高度随双轴应变的变化曲线; (b)异质结PD1在应变下的能带结构; (c)异质结PU2在应变下的能带结构. 红色表示Ga2S3, 蓝绿色表示T-NbTe2

    Fig. 6.  (a) Trend of SBH of heterojunction PD1 and PU2 with the biaxial strain; (b) band structure of the heterojunction PD1 under strains; (c) band structure of the heterojunction PU2 under strain. The red lines represent Ga2S3, and the cyan lines represent T-NbTe2.

  • [1]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 636 157766Google Scholar

    [2]

    Zheng Y, Gao J, Han C, Chen W 2021 Cell Rep. Phys. Sci. 2 100298Google Scholar

    [3]

    Chen S Y, Wang S, Wang C, Wang Z C, Liu Q 2022 Nano Today 42 101372Google Scholar

    [4]

    Zheng S, Lu H C, Liu H, Liu D M, Robertson J 2019 Nanoscale 11 4811Google Scholar

    [5]

    Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar

    [6]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195Google Scholar

    [7]

    Nguyen H T, Obeid M M, Bafekry A, Idrees M, Vu T V, Phuc H V, Hieu N N, Hoa L T, Amin B, Nguyen C V 2020 Phys. Rev. B 102 075414Google Scholar

    [8]

    Cao L M, Ang Y S, Wu Q Y, Ang L K 2019 Appl. Phys. Lett. 115 241601Google Scholar

    [9]

    Zheng Y L, Tang X, Wang W L, Jin L, Li G Q 2021 Adv. Funct. Mater. 31 2008307Google Scholar

    [10]

    Jastrzebskia C, Jastrzebskib D J, Kozaka V, Pietakb K, Wierzbicki M, Gebicki W 2019 Mater. Sci. Semicond. Process. 94 80Google Scholar

    [11]

    Dénoue K, Cheviré F, Calers C, Verger L, Coq D L, Calvez L 2020 J. Solid State Chem. 292 121743Google Scholar

    [12]

    Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303Google Scholar

    [13]

    Liu X H, Mao Y L 2024 Appl. Phys. Lett. 125 043102Google Scholar

    [14]

    Khusayfan N M, Khanfar H K 2018 Results Phys. 10 332Google Scholar

    [15]

    Khusayfan N M, Qasrawi A F, Khanfar H K 2018 Results Phys. 8 1239Google Scholar

    [16]

    Shang X X, Zhang Y L, Li T, Zhang H N, Zou X F, Wageh S, Al-Ghamdi A A, Zhang H, Si S H, Li D W 2024 J. Materiomics 10 355Google Scholar

    [17]

    Dong J Z, Li C S, Yang J, Chen B B, Song H J, Chen J S, Peng W X 2016 Cryst. Res. Technol. 51 671Google Scholar

    [18]

    Suonan Z X, Wu H X, Mi S, Xu H, Xu H W, Zhang H Y, Pang F 2024 J. Cryst. Growth 648 127891Google Scholar

    [19]

    Behera S K, Ramamurthy P C 2024 New J. Chem 48 15493Google Scholar

    [20]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [21]

    Li H, ZhangY F, Liu F B, Lu J 2024 Nanoscale 16 18005Google Scholar

    [22]

    Fang S B, Li Q H, Yang C, Wu B C, Liu S Q, Yang J, Ma J C, Yang Z M, Tang K C, Lu J 2023 Phys. Rev. Mater. 7 084412Google Scholar

    [23]

    Han J N, Cao S G, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 045002Google Scholar

    [24]

    Xu Y H, Han J N, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504Google Scholar

    [25]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [28]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens Matter 14 2745Google Scholar

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [30]

    Xu Z, Luo W D, Guo S Y, Liu S Z 2024 ACS Appl. Mater. Interfaces 16 40123Google Scholar

    [31]

    Ramezani H R, Şaşıoğlu E, Hadipour H, Soleimani H T, Friedrich C, Blügel S, Mertig I 2024 Phys. Rev. B 109 125108Google Scholar

    [32]

    Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312Google Scholar

    [33]

    Hieu N N, Phuc H V, Kartamyshev A I, Vu T V 2022 Phys. Rev. B 105 075402Google Scholar

    [34]

    Jin H, Wei T, Huang B 2024 Nano Lett. 24 10892

    [35]

    Xia J L, Gu Y X, Mai J, Hu T Y, Wang Q K, Xie C, Wu Y K, Wang X 2023 Heliyon 9 20619Google Scholar

    [36]

    Sun N, Qi S M, Zhou B Z, Mi W B, Wang X C 2021 J. Alloys Compd. 875 160048Google Scholar

    [37]

    Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990Google Scholar

    [38]

    Zhao C S, Li Z H, Zhang Z H 2024 Appl. Surf. Sci. 672 160859Google Scholar

    [39]

    Wang Q H, Li H, Si L N, Dou Z L, Yan H J, Yang Y, Liu F B 2023 Mater. Today Commun. 35 105724

    [40]

    Zhang W X, Yin Y, He C 2020 Phys. Chem. Chem. Phys. 22 26231Google Scholar

    [41]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095Google Scholar

    [42]

    Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B, Vu T V 2020 Phys. Rev. B 101 235419Google Scholar

    [43]

    Vicario C, Monoszlai B, Hauri C P 2014 Phys. Rev. Lett. 112 213901Google Scholar

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 不同相NbS2与GeS2构成的二维金属-半导体异质结的电接触性质. 物理学报, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [2] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] 黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢. SiC电力电子器件金属接触研究现状与进展. 物理学报, 2021, 70(20): 207302. doi: 10.7498/aps.70.20210675
    [5] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [6] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [7] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [8] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究. 物理学报, 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [9] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [10] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [11] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [12] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [13] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [14] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [15] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [16] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [17] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [18] 丁志博, 王 坤, 陈田祥, 陈 迪, 姚淑德. 氧气氛中p-GaN/Ni/Au电极在相同温度不同合金时间下的欧姆接触形成机制和扩散行为. 物理学报, 2008, 57(4): 2445-2449. doi: 10.7498/aps.57.2445
    [19] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  324
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-10
  • 修回日期:  2025-02-01
  • 上网日期:  2025-03-20

/

返回文章
返回