搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga2O3纳米机电谐振器机械能量耗散途径研究

郑旭骞 巩思豫 耿红尚 郭宇锋

引用本文:
Citation:

Ga2O3纳米机电谐振器机械能量耗散途径研究

郑旭骞, 巩思豫, 耿红尚, 郭宇锋
cstr: 32037.14.aps.74.20241706

Mechanical energy dissipation pathways in Ga2O3 nanoelectromechanical resonators

ZHENG Xuqian, GONG Siyu, GENG Hongshang, GUO Yufeng
cstr: 32037.14.aps.74.20241706
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • β相氧化镓(β-Ga2O3)因具有超宽禁带特性、卓越的机械性能和潜在的成本优势, 在高功率、高频率及光电微纳机电器件领域展现出极佳的应用前景. 本文详细探讨了双端固支结构与圆形鼓面结构的β-Ga2O3纳米机电谐振器的能量耗散机制及如何通过设计优化提高其品质因数(Q值). 首先通过理论分析和COMSOL软件仿真, 深入探讨了Akhiezer效应、热弹性阻尼、支撑阻尼和表面阻尼等能量耗散过程, 并制备了器件, 采用激光干涉法对β-Ga2O3纳米机电谐振器进行实验验证. 结果表明, 表面阻尼与支撑阻尼是当前限制β-Ga2O3纳米机电谐振器Q值的主要因素, 而Akhiezer效应和热弹性阻尼则决定了Q值的上限. 本研究不仅阐明了Ga2O3微纳机电谐振器能量耗散的复杂机制, 也为其带宽调控提供了有价值的指导.
    Beta-gallium oxide (β-Ga2O3), an emerging ultrawide bandgap (~4.8 eV) semiconductor, exhibits excellent electrical properties and cost advantages, being made as a promising candidate for high-power, high-frequency, and optoelectronic applications. Furthermore, its superior mechanical properties, including a Young’s modulus of 261 GPa, a mass density of 5950 kg/m³, and an acoustic velocity of 6623 m/s, make it particularly attractive for realizing high-frequency micro- and nanoelectromechanical system (M/NEMS) resonators. In this work, the energy dissipation mechanisms are investigated in two different β-Ga2O3 NEMS resonator geometries – doubly-clamped beams (10.5–20.8 μm length) and circular drumheads (3.3–5.3 μm diameter) – through theoretical analysis, finite element model (FEM) simulations, and experimental measurements under vacuum condition (<50 mTorr).The dominant energy dissipation mechanisms in resonators are investigated, including Akhiezer damping (AKE), thermoelastic damping (TED), clamping loss, and surface loss, by using a combined theoretical and FEM approach. Experimentally, the resonators are made by employing mechanical exfoliation combined with dry transfer techniques, yielding device thickness of 30–500 nm as verified by atomic force microscopy (AFM). Subsequently, laser interferometry is used to characterize the resonator dynamics. The resonant frequency f is obtained in a range of 5–75 MHz and the quality factor Q is approximately 200–1700 obtained through Lorentzian fitting of the resonant spectra, thus verifying the theoretical and simulation results. Our analysis indicates that surface loss and clamping loss are the main limiting factors for the Q values of current β-Ga2O3 resonators. Conversely, AKE and TED are mainly affected by material properties and resonator geometry, thus setting an upper limit for the achievable Q values with f×Q product reaching up to 1014 Hz.Our study provides a comprehensive framework integrating both theoretical analysis and experimental validation for understanding the complex energy dissipation mechanism inside a β-Ga2O3 NEMS resonator, and optimizes Q value through strain engineering and phonon crystal anchoring. These findings provide essential guidance for optimizing the performance and modulating the bandwidth of β-Ga2O3 NEMS resonator in high-frequency and high-power applications.
      通信作者: 郑旭骞, xqzheng@njupt.edu.cn ; 郭宇锋, yfguo@njupt.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3203600)、江苏省基础研究计划自然科学基金青年基金(批准号: BK20230360)和南京邮电大学引进人才科研启动基金(批准号: NY222106)资助的课题.
      Corresponding author: ZHENG Xuqian, xqzheng@njupt.edu.cn ; GUO Yufeng, yfguo@njupt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3203600), the Jiangsu Province Natural Science Foundation for Basic Research Program (Grant No. BK20230360), and the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant No. NY222106).
    [1]

    Ning S T, Huang S, Zhang Z Y, Zhao B, Zhang R Q, Qi N, Chen Z Q 2022 Phys. Chem. Chem. Phys. 24 12052Google Scholar

    [2]

    Zhou M, Zhou H, Huang S, Si M W, Zhang Y H, Luan T T, Yue H Q, Dang K, Wang C L, Liu Z H, Zhang J C, Hao Y 2023 2023 International Electron Devices Meeting Francisco, CA, USA, December 9–13, 2023 p1

    [3]

    Chen H, Li Z, Zhang Z Y L, Liu D H, Zeng L R, Yan Y R, Chen D Z, Feng Q, Zhang J C, Hao Y, Zhang C F 2024 Semicond. Sci. Technol. 39 063001Google Scholar

    [4]

    Zheng X Q, Zhao H P, Feng P X L 2022 Appl. Phys. Lett. 120 040502Google Scholar

    [5]

    Labed M, Sengouga N, Prasad C V, Henini M, Rim Y S 2023 Mater. Today Phys. 36 101155Google Scholar

    [6]

    Liang Y, Yu H, Wang H, Zhang H C, Cui T J 2022 Chip 1 100030Google Scholar

    [7]

    Li H, Zhou Z H, Zhao Y Z, Li Y 2023 Chip 2 100049Google Scholar

    [8]

    Soref R, Leonardis F D 2022 Chip 1 100011Google Scholar

    [9]

    Lu C C, Yuan H Y, Zhang H Y, Zhao W, Zhang N E, Zheng Y J, Elshahat S, Liu Y C 2022 Chip 1 100025Google Scholar

    [10]

    Wang L M, Zhang P C, Liu Z H, Wang Z H, Yang R 2023 Chip 2 100038Google Scholar

    [11]

    Abdolvand R, Bahreyni B, Lee J E Y, Nabki F 2016 Micromachines 7 160Google Scholar

    [12]

    Feng T R, Yuan Q, Yu D L, Wu B, Wang H 2022 Micromachines 13 2195Google Scholar

    [13]

    Aoust G, Levy R, Bourgeteau B, Traon O L 2015 Sens. Actuators A: Phys. 230 126Google Scholar

    [14]

    Sun Y X, Tohmyoh H 2009 J. Sound Vib. 319 392Google Scholar

    [15]

    Schmid S, Hierold C 2008 J. Appl. Phys. 104 093516Google Scholar

    [16]

    Imboden M, Mohanty P 2014 Phys. Rep. 534 89Google Scholar

    [17]

    Rodriguez J, Chandorkar S A, Watson C A, Glaze G M, Ahn C H, Ng E J, Yang Y S, Kenny T W 2019 Sci. Rep. 9 2244Google Scholar

    [18]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [19]

    Bokaian A 1990 J. Sound Vib. 142 481Google Scholar

    [20]

    Suzuki H, Yamaguchi N, Izumi H 2009 Acoust. Sci. Technol. 30 348Google Scholar

    [21]

    Cimalla V, Foerster C, Will F, Tonisch K, Brueckner K, Stephan R, Hein M E, Ambacher O, Aperathitis E 2006 Appl. Phys. Lett. 88 253501Google Scholar

    [22]

    Lee J, Wang Z H, He K L, Shan J, Feng P X L 2014 Appl. Phys. Lett. 105 023104Google Scholar

    [23]

    Kunal K, Aluru N R 2011 Phys. Rev. B 84 245450Google Scholar

    [24]

    Ghaffari S, Chandorkar S A, Wang S S, Ng E J, Ahn C H, Hong V, Yang Y S, Kenny T W 2013 Sci. Rep. 3 3244Google Scholar

    [25]

    Tabrizian R, Rais-Zadeh M, Ayazi F 2009 Solid-state Sensors, Actuators & Microsystems Conference Denver, CO, USA, June 21–25, 2009 p2131

    [26]

    Chen Z J, Jia Q Q, Liu W L, Zhu Y F, Yuan Q, Yang J L, Yang F H 2021 IEEE MEMS 2021 Virtual Conference Gainesville, FL, USA, January 25–29, 2021 p964

    [27]

    Yan S H, Liu Z, Tan C K, Zhang X Y, Li S, Shi L, Guo Y F, Tang W H 2023 Appl. Phys. Lett. 123 142202Google Scholar

    [28]

    Guo Z, Verma A, Wu X F, Sun F Y, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T F 2015 Appl. Phys. Lett. 106 111909Google Scholar

    [29]

    Safieddine F, Hassan F E H, Kazan M 2022 J. Solid State Chem. 312 123272Google Scholar

    [30]

    Prabhakar S, Vengallatore S 2007 J. Micromech. Microeng. 17 532Google Scholar

    [31]

    Lifshitz R, Roukes M L 2000 Phys. Rev. B 61 5600

    [32]

    Sun Y X, Saka M 2010 J. Sound Vib. 329 328Google Scholar

    [33]

    Cheng Z Z, Hanke M, Galazka Z, Trampert A 2018 Appl. Phys. Lett. 113 182102Google Scholar

    [34]

    Ko J H, Jeong J, Choi J, Cho M 2011 Appl. Phys. Lett. 98 171909Google Scholar

    [35]

    Yang J L, Ono T, Esashi M 2002 J. Microelectromech. Syst. 11 775Google Scholar

    [36]

    Mohanty P, Harrington D A, Ekinci K L, Yang Y T, Murphy M J, Roukes M L 2002 Phys. Rev. B 66 085416Google Scholar

    [37]

    Villanueva L G, Schmid S 2014 Phys. Rev. Lett. 113 227201Google Scholar

    [38]

    Zheng X Q, Tharpe T, Enamul Hoque Yousuf S M, Rudawski N G, Feng P X L 2022 ACS Appl. Mater. Interfaces 14 36807Google Scholar

    [39]

    Bercioux D, Buchs G, Grabert H, Groning O 2011 Phys. Rev. B 83 165439Google Scholar

    [40]

    Wang C H, Ning Y H, Zhao W Y, Yi G X, Huo Y 2023 Sens. Actuator A: Phys. 359 114456Google Scholar

    [41]

    Ahamed M J, Senkal D, Shkel A M 2014 2014 International Symposium on Inertial Sensors and Systems (INERTIAL) Laguna Beach, CA, USA, February 25–26, 2014 p59

    [42]

    Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H P, Feng P X L 2017 ACS Appl. Mater. Interfaces 9 43090Google Scholar

    [43]

    Li S S, Lin Y W, Xie Y, Ren Z Y, Nguyen C T C 2004 17th Int. IEEE Micro Electro Mechanical Systems Conf Maastricht, The Netherlands, January 25–29, 2004 p821

    [44]

    郑贤德, 甄嘉鹏, 邱静, 刘冠军 2023 仪器仪表学报 44 206Google Scholar

    Zheng X D, Zhen J P, Qiu J, Liu G J 2023 Chin. J. Sci. Instrum. 44 206Google Scholar

  • 图 1  (a) 双端固支谐振器结构示意图; (b) 圆形鼓面谐振器结构示意图; (c) 激光干涉测量系统原理图, 其中h, H分别表示材料厚度与沟槽深度; (d) 谐振器典型频谱曲线及其洛伦兹拟合, 该器件为d = 3.3 μm, h = 45 nm的圆形鼓面谐振器; (e) AFM扫描曲线, 插图为所测量的双端固支结构谐振器, 其中短实线为AFM探针的扫描路径

    Fig. 1.  (a) Illustration of a doubly-clamped resonator; (b) illustration of a circular drumhead resonator; (c) schematic of the laser interferometry measurement system, where h and H denote the material thickness and trench depth, respectively; (d) typical spectrum of a circular drumhead resonator with d = 3.3 μm, h = 45 nm and its Lorentzian fitting; (e) AFM scanning curve with inset showing the scanning path, where the short solid line is the scanning path of the AFM probe.

    图 2  不同能量耗散机制

    Fig. 2.  Different mechanisms of energy dissipation.

    图 3  不同谐振器的fQ测量值, 插图显示了对应典型器件的显微图, Ld分别表示双端固支悬空结构的长度与圆形鼓面悬空结构的直径 (a), (b) L = 10.5 μm和20.8 μm的双端固支器件, 比例尺为10 μm; (c), (d) d = 3.3 μm和5.3 μm的圆形鼓面器件, 比例尺为5 μm

    Fig. 3.  Measured values of f and Q for various resonators, with the insets showing the corresponding micrographs of typical devices: (a), (b) Doubly-clamped resonators with L = 10.5 μm and 20.8 μm, each with a scale bar of 10 μm; (c), (d) circular drumhead resonators with d = 3.3 μm and 5.3 μm, each with a scale bar of 5 μm.

    图 4  (a) L = 10.5 μm和(b) L = 20.8 μm两种双端固支器件在不同内应力 (红色曲线为σ = 5 MPa, 蓝色曲线为σ = 50 MPa) 下谐振频率f的计算值fcalc(实线)、仿真值fsim(虚线)与测量值fmeas(散点); (c) L = 10.5 μm和(d) L = 20.8 μm两种双端固支谐振器在不同耗散机制限制下的Q值、通过(1)式计算得到的Qtotal以及测量值Qmeas

    Fig. 4.  Calculated value fcalc (solid line), simulated value fsim (dashed line), and measured value fmeas (scattered symbols) of the resonant frequency f under different internal stresses (σ = 5 MPa for red curve and σ = 50 MPa for blue curve) for doubly-clamped resonators: (a) L = 10.5 μm and (b) L = 20.8 μm, Q values limited by different loss mechanisms, Qtotal calculated by Eq. (1), and measured Qmeas for doubly-clamped resonators of (c) L = 10.5 μm and (d) L = 20.8 μm.

    图 5  (a) d = 3.3 μm和(b) d = 5.3 μm两种圆形鼓面器件在不同内应力(红色曲线为σ = 5 MPa, 蓝色曲线为σ = 50 MPa)下谐振频率f的计算值fcalc(实线)、仿真值fsim(虚线)与测量值fmeas(散点), 其中实线为计算值, 虚线为仿真值; (c) d = 3.3 μm和(d) d = 5.3 μm两种圆形鼓面器件在不同耗散机制限制下的Q值、通过(1)式计算得到的Qtotal以及测量值Qmeas

    Fig. 5.  Calculated value fcalc (soild line), simulated value fsim (dashed line), and measured value fmeas (scattered line) of the resonant frequency f under different internal stresses (σ = 5 MPa for red curve and σ = 50 MPa for blue curve) of drumhead resonators: (a) d = 3.3 μm and (b) d = 5.3 μm. Q values limited by different loss mechanisms, Qtotal calculated by Eq. (1), and measured Qmeas for drumhead resonators of (c) d = 3.3 μm and (d) d = 5.3 μm.

    图 6  (a) 双端固支与(b)圆形鼓面谐振器的不同f × Q值, 包括Qtotal (实线), Qmax (虚线), Qmeas (散点)

    Fig. 6.  Different f × Q values for doubly-clamped resonators and circular drumhead resonators, including Qtotal (solid line), Qmax (dashed line), Qmeas (scattered symbols).

    表 1  β-Ga2O3的材料性能参数

    Table 1.  Material properties of β-Ga2O3.

    物理量
    杨氏模量EY[4]/GPa 261
    密度ρ[4] /(kg·m–3) 5950
    泊松比ν[4] 0.2
    声速c[4]/(m·s–1) 6623
    声子散射时间τs/s 双端固支: 6.37×10–13
    圆形鼓面: 4.89×10–13
    平均Grüneisen参数γavg[27] 1.018
    质量热容Cp[29] /(J·kg–1·K–1) 491
    热膨胀系数α[33]/K–1 [100]: 0.10×10–6
    [010]: 1.68×10–6
    [001]: 1.74×10–6
    热导率k[28]/(W·m–1·K–1) [100]: 10.9
    [010]: 27.0
    [001]: 14.5
    下载: 导出CSV
  • [1]

    Ning S T, Huang S, Zhang Z Y, Zhao B, Zhang R Q, Qi N, Chen Z Q 2022 Phys. Chem. Chem. Phys. 24 12052Google Scholar

    [2]

    Zhou M, Zhou H, Huang S, Si M W, Zhang Y H, Luan T T, Yue H Q, Dang K, Wang C L, Liu Z H, Zhang J C, Hao Y 2023 2023 International Electron Devices Meeting Francisco, CA, USA, December 9–13, 2023 p1

    [3]

    Chen H, Li Z, Zhang Z Y L, Liu D H, Zeng L R, Yan Y R, Chen D Z, Feng Q, Zhang J C, Hao Y, Zhang C F 2024 Semicond. Sci. Technol. 39 063001Google Scholar

    [4]

    Zheng X Q, Zhao H P, Feng P X L 2022 Appl. Phys. Lett. 120 040502Google Scholar

    [5]

    Labed M, Sengouga N, Prasad C V, Henini M, Rim Y S 2023 Mater. Today Phys. 36 101155Google Scholar

    [6]

    Liang Y, Yu H, Wang H, Zhang H C, Cui T J 2022 Chip 1 100030Google Scholar

    [7]

    Li H, Zhou Z H, Zhao Y Z, Li Y 2023 Chip 2 100049Google Scholar

    [8]

    Soref R, Leonardis F D 2022 Chip 1 100011Google Scholar

    [9]

    Lu C C, Yuan H Y, Zhang H Y, Zhao W, Zhang N E, Zheng Y J, Elshahat S, Liu Y C 2022 Chip 1 100025Google Scholar

    [10]

    Wang L M, Zhang P C, Liu Z H, Wang Z H, Yang R 2023 Chip 2 100038Google Scholar

    [11]

    Abdolvand R, Bahreyni B, Lee J E Y, Nabki F 2016 Micromachines 7 160Google Scholar

    [12]

    Feng T R, Yuan Q, Yu D L, Wu B, Wang H 2022 Micromachines 13 2195Google Scholar

    [13]

    Aoust G, Levy R, Bourgeteau B, Traon O L 2015 Sens. Actuators A: Phys. 230 126Google Scholar

    [14]

    Sun Y X, Tohmyoh H 2009 J. Sound Vib. 319 392Google Scholar

    [15]

    Schmid S, Hierold C 2008 J. Appl. Phys. 104 093516Google Scholar

    [16]

    Imboden M, Mohanty P 2014 Phys. Rep. 534 89Google Scholar

    [17]

    Rodriguez J, Chandorkar S A, Watson C A, Glaze G M, Ahn C H, Ng E J, Yang Y S, Kenny T W 2019 Sci. Rep. 9 2244Google Scholar

    [18]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [19]

    Bokaian A 1990 J. Sound Vib. 142 481Google Scholar

    [20]

    Suzuki H, Yamaguchi N, Izumi H 2009 Acoust. Sci. Technol. 30 348Google Scholar

    [21]

    Cimalla V, Foerster C, Will F, Tonisch K, Brueckner K, Stephan R, Hein M E, Ambacher O, Aperathitis E 2006 Appl. Phys. Lett. 88 253501Google Scholar

    [22]

    Lee J, Wang Z H, He K L, Shan J, Feng P X L 2014 Appl. Phys. Lett. 105 023104Google Scholar

    [23]

    Kunal K, Aluru N R 2011 Phys. Rev. B 84 245450Google Scholar

    [24]

    Ghaffari S, Chandorkar S A, Wang S S, Ng E J, Ahn C H, Hong V, Yang Y S, Kenny T W 2013 Sci. Rep. 3 3244Google Scholar

    [25]

    Tabrizian R, Rais-Zadeh M, Ayazi F 2009 Solid-state Sensors, Actuators & Microsystems Conference Denver, CO, USA, June 21–25, 2009 p2131

    [26]

    Chen Z J, Jia Q Q, Liu W L, Zhu Y F, Yuan Q, Yang J L, Yang F H 2021 IEEE MEMS 2021 Virtual Conference Gainesville, FL, USA, January 25–29, 2021 p964

    [27]

    Yan S H, Liu Z, Tan C K, Zhang X Y, Li S, Shi L, Guo Y F, Tang W H 2023 Appl. Phys. Lett. 123 142202Google Scholar

    [28]

    Guo Z, Verma A, Wu X F, Sun F Y, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T F 2015 Appl. Phys. Lett. 106 111909Google Scholar

    [29]

    Safieddine F, Hassan F E H, Kazan M 2022 J. Solid State Chem. 312 123272Google Scholar

    [30]

    Prabhakar S, Vengallatore S 2007 J. Micromech. Microeng. 17 532Google Scholar

    [31]

    Lifshitz R, Roukes M L 2000 Phys. Rev. B 61 5600

    [32]

    Sun Y X, Saka M 2010 J. Sound Vib. 329 328Google Scholar

    [33]

    Cheng Z Z, Hanke M, Galazka Z, Trampert A 2018 Appl. Phys. Lett. 113 182102Google Scholar

    [34]

    Ko J H, Jeong J, Choi J, Cho M 2011 Appl. Phys. Lett. 98 171909Google Scholar

    [35]

    Yang J L, Ono T, Esashi M 2002 J. Microelectromech. Syst. 11 775Google Scholar

    [36]

    Mohanty P, Harrington D A, Ekinci K L, Yang Y T, Murphy M J, Roukes M L 2002 Phys. Rev. B 66 085416Google Scholar

    [37]

    Villanueva L G, Schmid S 2014 Phys. Rev. Lett. 113 227201Google Scholar

    [38]

    Zheng X Q, Tharpe T, Enamul Hoque Yousuf S M, Rudawski N G, Feng P X L 2022 ACS Appl. Mater. Interfaces 14 36807Google Scholar

    [39]

    Bercioux D, Buchs G, Grabert H, Groning O 2011 Phys. Rev. B 83 165439Google Scholar

    [40]

    Wang C H, Ning Y H, Zhao W Y, Yi G X, Huo Y 2023 Sens. Actuator A: Phys. 359 114456Google Scholar

    [41]

    Ahamed M J, Senkal D, Shkel A M 2014 2014 International Symposium on Inertial Sensors and Systems (INERTIAL) Laguna Beach, CA, USA, February 25–26, 2014 p59

    [42]

    Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H P, Feng P X L 2017 ACS Appl. Mater. Interfaces 9 43090Google Scholar

    [43]

    Li S S, Lin Y W, Xie Y, Ren Z Y, Nguyen C T C 2004 17th Int. IEEE Micro Electro Mechanical Systems Conf Maastricht, The Netherlands, January 25–29, 2004 p821

    [44]

    郑贤德, 甄嘉鹏, 邱静, 刘冠军 2023 仪器仪表学报 44 206Google Scholar

    Zheng X D, Zhen J P, Qiu J, Liu G J 2023 Chin. J. Sci. Instrum. 44 206Google Scholar

  • [1] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究. 物理学报, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [4] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学. 物理学报, 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [5] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [6] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [7] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [8] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [9] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [10] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [11] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [12] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [13] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [14] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [15] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [16] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [17] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [18] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [19] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [20] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
计量
  • 文章访问数:  460
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-01-10
  • 上网日期:  2025-02-09
  • 刊出日期:  2025-04-05

/

返回文章
返回