搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

$ $基于单层MoS2场效应管中等离子波的太赫兹探测仿真

王小云 范汇川 陈效双 王林

引用本文:
Citation:

$ $基于单层MoS2场效应管中等离子波的太赫兹探测仿真

王小云, 范汇川, 陈效双, 王林

Simulation of terahertz detection based on plasma waves in monolayer MoS2 field-effect transistor

WANG Xiaoyun, FAN Huichuan, CHEN Xiaoshuang, WANG Lin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 低维材料体系得益于其本身极高的载流子迁移率以及灵活的集成性, 在太赫兹探测领域被研究并展现出极大的应用潜力. 目前利用软件对半导体太赫兹探测进行仿真分析所依赖的结构主要面向体材料, 而对于低维材料体系的太赫兹探测仿真分析则相对空白. 本文首次对单层MoS2场效应管中等离子体波效应的太赫兹探测进行了仿真分析, 并且系统地阐述了利用等离子体波进行太赫兹探测的原理以及分析过程. 通过调整不同的结构参数和外场条件, 该单层MoS2场效应管太赫兹探测器最大的直流电压信号输出可以达到14 μV. 该信号随着栅极与漏极之间的偏置电压呈现复杂的变化趋势, 通过研究发现该变化趋势与偏置电压引起的载流子浓度变化以及随之改变的动量弛豫时间相关. 本研究有望为低维材料太赫兹探测器设计提供进一步指导.
    Low-dimensional material systems benefit from their extremely high carrier mobility and flexible integrability, making them a subject of research in the terahertz detection field and demonstrating significant potential for applications. At present, software is mainly used to simulate and analyze the structures relied upon for semiconductor terahertz detection of bulk materials, while the simulation analysis for terahertz detection in low-dimensional material systems is still relatively unexplored. Due to the low degrees of freedom in carrier motion in low-dimensional materials, the probability of scattering caused by collisions between electrons and the lattice in the channel during electron movement is effectively reduced, making these materials have immense potential in high-sensitivity detection. Their low equivalent noise power and high signal-to-noise ratio performance in signal detection highlight the broad development prospects of these materials in the field of communication. This work simulates and analyzes the plasmon wave effect in a monolayer MoS2 field-effect transistor (FET) for THz detection for the first time, and systematically elucidates the principle and analysis process of using plasmon waves for THz detection. The transmission characteristic curve of the device is simulated and measured at a source-drain voltage of 0.5 V, and, a gate-to-drain voltage of –0.1 V is selected based on this curve to preliminarily investigate the THz response performance of the device. By adjusting key parameters such as Ugs, THz wave irradiation frequency, and HfO2 layer thickness, it is found that the monolayer MoS2 FET THz detector can produce a maximum DC voltage signal of 14 μV. This signal exhibits a complex variation trend related to the bias voltage between the gate and drain. This trend correlates with the bias voltage-induced changes in carrier concentration and the corresponding momentum relaxation time. The research results obtained in this paper can provide an important reference for designing low-dimensional material THz detectors. Furthermore, they lay a foundation for optimizing the performance of two-dimensional material THz detectors through simulation analysis, thereby providing deeper insights into the study of THz photoelectric responses in 2D materials.
  • 图 1  单层MoS2场效应管太赫兹探测器结构示意图

    Fig. 1.  Structure of monolayer MoS2 FET terahertz detector.

    图 2  转移特性曲线 (a)不同HfO2厚度下的转移特性曲线;(b)不同沟道长度下的转移特性曲线

    Fig. 2.  Transfer characteristic curves: (a) The transfer characteristic curves with different HfO2 thickness; (b) the transfer characteristic curves with different channel length.

    图 3  在太赫兹光激励下产生的源漏电压Vds随时间的关系

    Fig. 3.  Time domain of Vds stimulated by terahertz radiation.

    图 4  Vds振荡信号经FFT后频率与振幅的关系

    Fig. 4.  Frequency domain of Vds.

    图 5  不同结构参数下的直流电压输出 (a) 不同太赫兹波振幅下的直流信号输出; (b)不同HfO2厚度的直流信号输出; (c)不同沟道长度的直流信号输出

    Fig. 5.  The DC voltages with different structure parameters: (a) The DC voltages with different U0; (b) the DC voltages with different HfO2 thicknesses; (c) the DC voltages with different channel lengths.

    图 6  不同结构参数下直流电压信号随偏置电压以及频率的变化 (a), (b) 不同HfO2厚度(a)和不同沟道长度(b)结构的直流电压信号输出随着偏置电压的变化; (c), (d) 不同HfO2厚度(c)和不同沟道长度(d)结构的直流电压信号输出随着太赫兹波频率的变化

    Fig. 6.  The DC voltages with different structure parameters at different Ugs and terahertz frequencies: (a), (b) The variation of DC voltage signals with bias voltage for structures with different HfO2 thicknesses (a) and different channel lengths (b); (c), (d) the variation of DC voltage signals with different HfO2 thicknesses (c) and different channel lengths (d) structures varies with the frequency of terahertz waves.

  • [1]

    冯伟, 韦舒婷, 曹俊诚 2021 物理学报 70 244303Google Scholar

    Feng W, Wei S T, Cao J C 2021 Acta Phys. Sin. 70 244303Google Scholar

    [2]

    Wang C X, Wang J, Hu S, Jiang Z H, Tao J, Yan F 2021 IEEE Veh. Technol. Mag 16 27Google Scholar

    [3]

    Shafie A, Yang N, Han C, Jornet J M, Juntti M, Kürner T 2023 IEEE Network 37 162

    [4]

    Jiang W, Zhou Q H, He J G, Habibi M A, Melnyk S, El-Absi M, Han B, Renzo M D, Schotten H D, Luo F L, El-Bawab T S, Juntti M, Debbah M, Leung V C M 2024 IEEE Commun. Surv. Tutorials 26 2326Google Scholar

    [5]

    Liu Z L, Yang C, Peng M G 2024 IEEE Network 38 194

    [6]

    Chen W R, Li L X, Chen Z, Liu Y W, Ning B Y, Quek T Q S 2024 IEEE Trans. Veh. Technol. 73 19019Google Scholar

    [7]

    Han C, Wu Y Z, Chen Z, Chen Y, Wang G J 2024 IEEE Commun. Mag. 62 102

    [8]

    Taghinejad M, Xia C, Hrton M, Lee K T, Kim A S, Li Q, Guzelturk B, Kalousek R, Xu F, Cai W, Lindenberg A M, Brongersma M L 2023 Science 382 299Google Scholar

    [9]

    Mihnev M T, Kadi F, Divin C J, Winzer T, Lee S, Liu C H, Zhong Z, Berger C, de Heer W A, Malic E, Knorr A, Norris T B 2016 Nat. Commun. 7 11617Google Scholar

    [10]

    Zhang D H, Xu Z, Cheng G, Liu Z, Gutierrez A R, Zang W Z, Norris T B, Zhong Z H 2022 Nat. Commun. 13 6404Google Scholar

    [11]

    Krishna Kumar R, Li G, Bertini R, Chaudhary S, Nowakowski K, Park J M, Castilla S, Zhan Z, Pantaleón P A, Agarwal H, Batlle-Porro S, Icking E, Ceccanti M, Reserbat-Plantey A, Piccinini G, Barrier J, Khestanova E, Taniguchi T, Watanabe K, Stampfer C, Refael G, Guinea F, Jarillo-Herrero P, Song J C W, Stepanov P, Lewandowski C, Koppens F H L 2025 Nat. Mater. 1

    [12]

    Dyakonov M, Shur M 1996 IEEE Trans. Electron Devices 43 380Google Scholar

    [13]

    Dyakonov M, Shur M 1993 Phys. Rev. Lett. 71 2465Google Scholar

    [14]

    Liu X Q, Shur M 2019 IEEE Radio and Wireless Symposium (RWS) Orlando, FL, USA 2019 pp1-4Google Scholar

    [15]

    Liu X Q, Shur M S 2020 IEEE Trans. Terahertz Sci. Technol. 10 15Google Scholar

    [16]

    Meng Q Z, Lin Q J, Jing W X, Han F, Zhao M, Jiang Z D 2018 IEEE Trans. Electron Devices 65 4807Google Scholar

    [17]

    Zhu Y J, Ji X L, Liao Y M, Wu F W, Yan F 2014 2014 12th IEEE ICSICT 1

    [18]

    Tong J Y, Muthee M, Chen S Y, Yngvesson S K, Yan J 2015 Nano Lett. 15 5295Google Scholar

    [19]

    Zhou J, Wang X Y, Chen Z Q Z, Zhang L B, Yao C Y, Du W J, Zhang J Z, Xing H Z, Fu N X, Chen G, Wang L 2022 Chin. Phys. B 31 050701Google Scholar

    [20]

    Shen J Z, Xing H Z, Wang L, Hu Z, Zhang L B, Wang X Y, Chen Z Q Z, Yao C Y, Jiang MJ, Fei F C, Chen G, Han L, Song F Q, Chen X S 2022 Appl. Phys. Lett. 120 063501Google Scholar

    [21]

    Shen Y, Tian H, Ren T L 2022 J. Semicond. 43 082002Google Scholar

    [22]

    Wang D, Yang L, Hu Z, Wang F, Yang Y G, Pan X K, Dong Z, Tian S J, Zhang L B, Han L, Jiang M J, Tang K Q, Dai F X, Zhang K, Lu W, Chen X S, Wang L, Hu W D 2025 Nat. Commun. 16 25Google Scholar

    [23]

    Han L, Zhang S, Tian S J, Zhang L B, Wei Y D, Zhang K X, Jiang M J, He Y, Liu C L, Tang W W, He J L, Shu H B, Politano A, Chen X S, Wang L 2025 ACS Nano 19 3740Google Scholar

    [24]

    Xiao K N, Zhang S, Zhang K X, Zhang L B, Wen Y F, Tian S J, Xiao Y L, Shi C F, Hou S C, Liu C L, Han L, He J L, Tang W W, Li G H, Wang L, Chen X S 2024 Adv. Sci. 11 2401716

  • [1] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真. 物理学报, doi: 10.7498/aps.74.20241516
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, doi: 10.7498/aps.72.20222171
    [3] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, doi: 10.7498/aps.71.20220131
    [4] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, doi: 10.7498/aps.71.20220722
    [5] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, doi: 10.7498/aps.71.20220817
    [6] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, doi: 10.7498/aps.70.20211210
    [7] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, doi: 10.7498/aps.69.20201507
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [9] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, doi: 10.7498/aps.68.20190552
    [10] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, doi: 10.7498/aps.67.20180226
    [11] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, doi: 10.7498/aps.66.148705
    [12] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, doi: 10.7498/aps.66.247701
    [13] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, doi: 10.7498/aps.65.110701
    [14] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, doi: 10.7498/aps.65.015201
    [15] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, doi: 10.7498/aps.63.075201
    [16] 刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼. 单层MoS2分子掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.63.117101
    [17] 赖占平. 二维辉钼材料及器件研究进展. 物理学报, doi: 10.7498/aps.62.056801
    [18] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, doi: 10.7498/aps.60.014220
    [19] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究. 物理学报, doi: 10.7498/aps.60.107301
    [20] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, doi: 10.7498/aps.59.2169
计量
  • 文章访问数:  284
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-21
  • 修回日期:  2025-06-03
  • 上网日期:  2025-06-06

/

返回文章
返回