搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

李织构(Ba, Ca)(Zr, Ti)O3陶瓷全矩阵机电性能及超声换能器应用

刘迎春 朱元博 张洪军 刘海顺 曹文武

引用本文:
Citation:

李织构(Ba, Ca)(Zr, Ti)O3陶瓷全矩阵机电性能及超声换能器应用

刘迎春, 朱元博, 张洪军, 刘海顺, 曹文武

Full matrix electromechanical properties and applications to ultrasonic transducer of textured (Ba, Ca)(Zr, Ti)O3 ceramics

LIU Yingchun, ZHU Yuanbo, ZHANG Hongjun, LIU Haishun, CAO Wenwu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 织构(Ba, Ca)(Zr, Ti)O3 (BCZT)陶瓷兼具高压电、高声速和低介电, 十分契合超声换能器高灵敏度和大带宽的发展需求. 然而织构陶瓷普遍缺乏器件设计所需的介电εij、压电dij及弹性常数sij等全矩阵机电参数, 而且现有机电耦合系数k的计算公式仅适用于极端长径比的理想情况, 难以精确描述k随有限长径比的演变规律, 这制约了陶瓷的实际应用. 本工作通过模板籽晶生长法成功制备出沿[00l]C高度取向(织构度f00l ~ 98%)的织构BCZT陶瓷, 通过谐振-反谐振法结合脉冲回波超声测量技术首次建立了完整的全矩阵参数数据库. 织构BCZT陶瓷呈现强各向异性泊松比, 压电系数d33 (605 pC/N)、机电耦合系数k33 (0.73)接近于PZT-5H陶瓷, 压电电压常数g33 (23.6 × 10–3 V·m–1·Pa–1)较PZT-5H提升20%. 基于压电本构方程构建出k关于任意长径比的理论模型, 据此设计制备的1-3型BCZT复合材料换能器具有高灵敏度和宽频带, 其插入损耗为–33.0 dB, 在~3.0 MHz中心频率处–6 dB带宽高达107.1%, 优于文献报道的PZT-5H超声换能器. 本研究不仅为无铅压电材料的器件化应用提供了完整的机电参数, 且为高性能绿色超声诊断设备的发展奠定了理论与技术基础.
    Ultrasound diagnostic technology demonstrates unique clinical value in cardiovascular monitoring, precise ophthalmic diagnosis, and interventional therapy, and possesses the advantages of high efficiency, safety, non-invasiveness, and significant cost-effectiveness. The performance of transducer that is a core component of ultrasound imaging systems directly determines the image resolution. Piezoelectric materials, essential for the acoustic-to-electric energy conversion, exhibit piezoelectric and electromechanical properties that obviously affect the transducer sensitivity and bandwidth. Although commercial Pb(Zr,Ti)O3 (PZT) ceramics offer excellent properties, the toxicity of the lead element in theentire material preparation, service life, and disposal process pose significant risks to human health and ecosystems.The [001]C-textured lead-free (Ba,Ca)(Zr,Ti)O3 (BCZT) ceramics are fabricated by the template grain growth (TGG) method. The materials demonstrate high piezoelectricity, elevated sound velocity, and low dielectric constant, making them highly suitable for developing high-sensitivity and large-bandwidth ultrasonic transducers. However, critical limitations are also existent: 1) the absence of full-matrix electromechanical properties such as dielectric constant εij, piezoelectric coefficient dij, and elastic constant sij essential for device design, and 2) the restriction of electromechanical coupling coefficient k calculations to extreme aspect ratios. The failure to accurately simulate the evolution of k under finite aspect ratio severely limits the practical applications.To overcome such challenges, highly [00l]C-oriented textured BCZT ceramics (texture degree f00l~98%) are synthesized via TGG. By combining resonance-antiresonance spectroscopy with pulse-echo ultrasonic measurements, the dataset of complete full-matrix electromechanical property is established for the first time. The textured BCZT ceramics exhibit strong anisotropic Poisson’s ratios. Their piezoelectric coefficient d33 (605 pC/N) and electromechanical coupling coefficient k33 (0.73) are comparable to those of PZT-5H ceramics, while the piezoelectric voltage constant g33 (23.6 × 10–3 V·m–1·Pa–1) is 20 % higher than that of PZT-5H.By using the piezoelectric constitutive equations, a theoretical model is developed to predict k at an arbitrary aspect ratio. Based on this model developed, the 1-3 type BCZT composite transducer with high sensitivity and wide frequency band is designed and fabricated, exhibiting a center frequency of ~3.0 MHz. The BCZT transducer achieves an insertion loss of –33.0 dB. The –6 dB bandwidth is as high as 107.1%, which is superior to the ultrasonic transducer made of PZT-5H composite reported in the literature. This work not only provides complete electromechanical parameters for lead-free piezoelectric device applications but also lays a theoretical and technical foundation for developing high-performance, eco-friendly ultrasonic diagnostic equipments.
  • 图 1  1-3型压电复合材料的制备流程图

    Fig. 1.  Fabrication procedures of 1-3 piezoelectric composites.

    图 2  测定全矩阵参数的织构BCZT陶瓷的振子类型

    Fig. 2.  Samples for full matrix constant determination of BCZT textured ceramics.

    图 3  (a) 无取向陶瓷和织构陶瓷的XRD图; (b) 织构陶瓷的断面SEM图

    Fig. 3.  (a) XRD patterns of random and textured ceramics; (b) cross-sectional SEM image of textured ceramics.

    图 4  织构BCZT陶瓷的(a) EBSD图, (b) (001)极图和(c) (001)反极图

    Fig. 4.  (a) EBSD map, (b) (001) pole figure, and (c) (001) inverse pole figure of the textured BCZT ceramic.

    图 5  圆柱型压电振子的示意图

    Fig. 5.  Schematic plot of the cylindrical piezoelectric resonator.

    图 6  织构BCZT陶瓷与PZT-5H陶瓷有效机电耦合系数keff对长径比G的依赖性

    Fig. 6.  Comparison of G dependence of electromechanical coupling coefficient keff between textured BCZT and PZT-5H ceramics.

    图 7  1-3型织构BCZT和PZT-5H压电复合材料的性能参数对比

    Fig. 7.  Property comparison between 1-3 textured BCZT and PZT-5H piezoelectric composites.

    图 8  织构BCTZ超声换能器时域谱与频域谱

    Fig. 8.  Pulse-echo waveform and frequency spectrum of textured BCTZ ultrasonic transducers.

    表 1  压电振子的机电参数对应关系

    Table 1.  Corresponding electromechanical parameters of piezoelectric vibrators.

    压电振子
    类型
    尺寸/mm测量参数计算参数
    LTE12.01×2.46×0.32$ s_{{11}}^{\text{E}} $, $ {k_{31}} $, $ \varepsilon _{{33}}^{\text{T}} $, $ \varepsilon _{33}^{\text{S}} $$ {d_{31}} $
    LE0.39×0.40×2.17$ s_{{33}}^{\text{D}} $, $ {k_{33}} $$ s_{{33}}^{\text{E}} $, $ {d_{33}} $
    TSE0.32×2.19×5.43$ c_{{44}}^{\text{D}} $, $ {k_{15}} $, $ \varepsilon _{{11}}^{\text{T}} $, $ \varepsilon _{{11}}^{\text{S}} $$ {d_{15}} $, $ c_{{44}}^{\text{E}} $
    TE0.62×6.52×6.50$ c_{{33}}^{\text{D}} $, $ {k_{\text{t}}} $, $ \varepsilon _{{33}}^{\text{S}} $, $ \varepsilon _{{33}}^{\text{T}} $$ c_{{33}}^{\text{E}} $
    下载: 导出CSV

    表 2  陶瓷样品声速和弹性常数之间的关系

    Table 2.  Ultrasonic velocities and elastic stiffness constants of ceramic samples.

    波传播方向[001][001][100][100][100]
    声速$ V_1^{\left[ {001} \right]} $$ V_{\text{s}}^{\left[ {001} \right]} $$ V_1^{\left[ {100} \right]} $$ V_{{\text{s}} \bot }^{\left[ {100} \right]} $$ V_{{\text{s}}\parallel }^{\left[ {{100}} \right]} $
    弹性刚度常数$ c_{{33}}^{\text{D}} $$ c_{{44}}^{\text{E}} $$ c_{{11}}^{\text{E}} $$ c_{{66}}^{\text{E}} $$ c_{{44}}^{\text{D}} $
    下载: 导出CSV

    表 3  织构BCZT陶瓷与PZT-5H陶瓷(来自Comsol数据库和参考文献[17])的弹性常数

    Table 3.  Elastic constants of textured BCZT ceramic compared to the PZT-5H ceramic (from the Comsol library and Ref. [17]).

    BCZT PZT-5H
    弹性刚度
    常数
    $c_{{11}}^{\text{E}}$/(1010 N·m–2)13.912.7
    $c_{{12}}^{\text{E}}$/(1010 N·m–2)6.98.0
    $c_{{13}}^{\text{E}}$/(1010 N·m–2)8.78.5
    $c_{{33}}^{\text{E}}$/(1010 N·m–2)11.011.7
    $c_{{44}}^{\text{E}}$/(1010 N·m–2)4.72.3
    $c_{{66}}^{\text{E}}$/(1010 N·m–2)2.92.3
    $c_{{11}}^{\text{D}}$/(1010 N·m–2)14.213.0
    $c_{{12}}^{\text{D}}$/(1010 N·m–2)7.28.3
    $c_{{13}}^{\text{D}}$/(1010 N·m–2)7.87.2
    $c_{{33}}^{\text{D}}$/(1010 N·m–2)13.715.7
    $c_{{44}}^{\text{D}}$/(1010 N·m–2)6.34.2
    $c_{{66}}^{\text{D}}$/(1010 N·m–2)2.92.4
    弹性柔顺
    常数
    $s_{{11}}^{\text{E}}$/(10–12 m2·N–1)14.216.5
    $s_{{12}}^{\text{E}}$/(10–12 m2·N–1)–0.1–4.8
    $s_{{13}}^{\text{E}}$/(10–12 m2·N–1)–11.2–8.5
    $s_{{33}}^{\text{E}}$/(10–12 m2·N–1)26.720.7
    $s_{{44}}^{\text{E}}$/(10–12 m2·N–1)21.443.5
    $s_{{66}}^{\text{E}}$/(10–12 m2·N–1)34.142.6
    $s_{{11}}^{\text{D}}$/(10–12 m2·N–1)11.114.0
    $s_{{12}}^{\text{D}}$/(10–12 m2·N–1)–3.1–7.3
    $s_{{13}}^{\text{D}}$/(10–12 m2·N–1)–4.5–3.1
    $s_{{33}}^{\text{D}}$/(10–12 m2·N–1)12.49.0
    $s_{{44}}^{\text{D}}$/(10–12 m2·N–1)16.023.7
    $s_{{66}}^{\text{D}}$/(10–12 m2·N–1)34.142.6
    下载: 导出CSV

    表 4  织构BCZT与PZT-5H陶瓷(来自Comsol数据库和参考文献[17])的压电和介电常数

    Table 4.  Piezoelectric and dielectric constants of textured BCZT ceramic compared to the PZT-5H ceramic (from the Comsol library and Ref.[17]).

    BCZT PZT-5H
    压电常数${e_{15}}$/(C·m–2)16.217.0
    ${e_{31}}$/(C·m–2)–5.8–6.6
    ${e_{33}}$/(C·m–2)17.823.3
    ${d_{15}}$/(10–12C·N–1)347741
    ${d_{31}}$/(10–12C·N–1)–281–274
    ${d_{33}}$/(10–12C·N–1)605593
    ${g_{15}}$/(10–3 V·m–1·Pa–1)15.626.8
    ${g_{31}}$/(10–3 V·m–1·Pa–1)–11.0–9.1
    ${g_{33}}$/(10–3 V·m–1·Pa–1)23.619.7
    $ {h_{15}} $/(108V·m–1)9.811.3
    $ {h_{31}} $/(108V·m–1)–4.9–5.1
    $ {h_{33}} $/(108V·m–1)15.018.0
    机电耦合
    系数
    $ {k_{15}} $0.500.51
    $ {k_{31}} $0.470.39
    $ {k_{33}} $0.730.75
    ${k_{\text{t}}}$0.440.51
    ${k_{\text{p}}}$0.630.65
    介电常数$ \varepsilon _{{11}}^{\text{S}} $/$ {\varepsilon _0} $18711704
    $ \varepsilon _{{33}}^{\text{S}} $/$ {\varepsilon _0} $13411434
    $ \varepsilon _{{11}}^{\text{T}} $/$ {\varepsilon _0} $25073130
    $ \varepsilon _{{33}}^{\text{T}} $/$ {\varepsilon _0} $28923400
    $\beta _{{11}}^{\text{S}}$/(10–4/$ {\varepsilon _0} $)5.35.9*
    $\beta _{{33}}^{\text{S}}$/(10–4/$ {\varepsilon _0} $)7.57.0*
    $\beta _{{11}}^{\text{T}}$/(10–4/$ {\varepsilon _0} $)4.03.2*
    $\beta _{{33}}^{\text{T}}$/(10–4/$ {\varepsilon _0} $)3.52.9*
    *基于表格中PZT-5H的数据, 根据公式$ {\beta _{ij}} = 1 / {\varepsilon _{ij}} $计算得出.
    下载: 导出CSV

    表 5  基于织构BCZT与其他材料的超声换能器性能对比

    Table 5.  Performance compassion of ultrasonic transducers based on textured BCZT and other materials.

    类型中心频率
    /MHz
    –6 dB带
    宽/%
    插入损耗
    /dB
    织构BCZT3.0107.1–33.0
    PZT-5H[25]3.2674.5–32.9
    PMN-PT单晶[26]2.5256.35–35.78
    PMN-PT单晶[27]6.9102–32.3
    PIN-PMN-PT单晶[28]1.9594.6–21.1
    下载: 导出CSV
  • [1]

    Rathod V T 2020 Sensors 20 4051Google Scholar

    [2]

    郑海荣, 邱维宝, 王丛知, 牛丽丽, 严飞, 蔡飞燕, 邹超, 隆晓菁, 乔阳紫, 肖杨 2020 中国科学: 生命科学 50 1256Google Scholar

    Zheng H R, Qiu W B, Wang C Z, Niu L L, Yan F, Cai F Y, Zou C, Long X J, Qiao Y Z, Xiao Y 2020 Sci. Sin. Vitae. 50 1256Google Scholar

    [3]

    Ho Y J, Huang C C, Fan C H, Liu H L, Yeh C K 2021 Cell. Mol. Life Sci. 78 6119Google Scholar

    [4]

    陈小明, 王明焱, 唐木智明, 李国荣 2021 物理学报 70 197701Google Scholar

    Chen X M, Wang M Y, Karaki T, Li G R 2021 Acta Phys. Sin. 70 197701Google Scholar

    [5]

    Scheidemann C, Bornmann P, Littmann W, Hemsel T 2025 Actuators 14 55Google Scholar

    [6]

    徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲 2020 物理学报 69 127705

    Xu Z, Lou L Y, Zhao C L, Tang H Z, Liu Y X, Li Z, Qi X M, Zhang B P, Li J F, Gong W, Wang K 202 Acta Phys. Sin. 69 127705

    [7]

    Panda P K, Sahoo B, Thejas T S, Krishna M 2022 J. Electron. Mater. 51 938Google Scholar

    [8]

    Zou J Z, Wei T X, Song M, Zeng S R, Zhou K C, Zhang Y, Zhang S J, Zhang D 2025 Adv. Funct. Mater. 35 2425080Google Scholar

    [9]

    Xu M H, Hua K H, Di B, Zheng Y, Zeng Q, Gao P H, Xi X 2024 Ceram. Int. 50 54557Google Scholar

    [10]

    Yang D Y, Wu X J, Lv X, Wen L J, Yin J, Wu J G 2025 J. Eur. Ceram. Soc. 45 117240Google Scholar

    [11]

    Qiu X Y, Wu C, Tan D Q, Liang R H, Liu C, Ma Y C, Zhang X X, Wei S Y, Zhang J W, Tan Z, Wang Z P, Lv X, Wu J G 2025 Nat. Commun. 16 2894Google Scholar

    [12]

    Safari A, Zhou Q, Zeng Y, Leber J D 2023 Jpn. J. Appl. Phys. 62 SJ0801Google Scholar

    [13]

    Liu Y C, Chang Y F, Li F, Yang B, Sun Y, Wu J, Zhang S T, Wang R X, Cao W W 2017 ACS Appl. Mater. Interfaces 9 29863Google Scholar

    [14]

    Liu Y C, Zhang H J, Shi W M, Wang Q, Jiang G C, Yang B, Cao W, W Tan J B 2022 J. Mater. Sci. Technol. 117 207Google Scholar

    [15]

    American National Standards Institute 1988 IEEE Standard on Piezoelectricity 176-1987 (New York: IEEE

    [16]

    Chen W G, Wen F, Wan Y, Li L L, Li Y, Zhou Y 2024 J. Adv. Dielect. 14 2350031Google Scholar

    [17]

    Yang S, Qiao L, Wang J, Wang M W, Gao X Y, Wu J, Li J L, Xu Z, Li F 2022 J. Appl. Phys. 131 124104Google Scholar

    [18]

    Xiao A L, Tang L G, Sun S S, Wu S J, Wu X Y, Luo W Y 2023 IEEE Trans. Instrum. Meas. 72 6007915

    [19]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [20]

    Kou Q W, Yang B, Lei H B, Yang S, Zhang Z R, Liu L J, Xie H, Sun Y, Chang Y F, Li F 2023 ACS Appl. Mater. Inter. 15 37706Google Scholar

    [21]

    Li J L, Qu W B, Daniels J, Wu H J, Liu L J, Wu J, Wang M W, Checchia S, Yang S, Lei H B, Lv R, Zhang Y, Wang D Y, Li X X, Ding X D, Sun J, Xu Z, Chang Y F, Zhang S J, Li F 2023 Science 380 87Google Scholar

    [22]

    Amorín H, Chateigner D, Holc J, Kosec M, Algueró M, Ricote J 2012 J. Am. Ceram. Soc. 95 2965Google Scholar

    [23]

    Poterala S F, Trolier-McKinstry S, Meyer R J, Messing G L 2011 J. Appl. Phys. 110 014105Google Scholar

    [24]

    Kim M, Kim J, Cao W W 2005 Appl. Phys. Lett. 87 132901Google Scholar

    [25]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87Google Scholar

    [26]

    Xu Y B, Zhu K, Sun E W, Ma J P, Li Y L, Zheng H S, Zhang R, Yang B, Cao W W 2024 Sens. Actuators A Phys. 369 115196Google Scholar

    [27]

    Hang H, Jiang X, Lin D, Wang F, Wang X, Luo H 2023 Curr. Appl. Phys. 47 1Google Scholar

    [28]

    Zhou D, Cheung K F, Chen Y, Lau S T, Zhou Q F, Shung K K, Luo H S, Dai J, Chan H L W 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 477Google Scholar

    [29]

    Wang W, Or S W, Yue Q W, Zhang Y Y, Jiao J, Leung C M, Zhao X Y, Luo H S 2013 Sens. Actuators A Phys. 196 70Google Scholar

  • [1] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, doi: 10.7498/aps.74.20241326
    [2] 林基艳, 李耀, 陈诚, 刘卫东, 林书玉, 郭林伟, 徐洁. 表面与缺陷调控型大功率压电超声换能器. 物理学报, doi: 10.7498/aps.74.20250047
    [3] 林基艳, 李耀, 陈诚, 林书玉, 郭林伟, 徐洁. 柱状和声学表面结构的压电超声换能器. 物理学报, doi: 10.7498/aps.74.20250901
    [4] 叶文旭, 江昊, 王怡, 林书玉. 基于声黑洞结构的夹心式弯曲振动超声换能器. 物理学报, doi: 10.7498/aps.74.20250767
    [5] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, doi: 10.7498/aps.72.20221547
    [6] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器. 物理学报, doi: 10.7498/aps.72.20230195
    [7] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器. 物理学报, doi: 10.7498/aps.72.20222110
    [8] 陈小明, 李国荣. BaTiO3基无铅陶瓷大电致伸缩系数. 物理学报, doi: 10.7498/aps.71.20220451
    [9] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器. 物理学报, doi: 10.7498/aps.70.20201352
    [10] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, doi: 10.7498/aps.69.20200277
    [11] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, doi: 10.7498/aps.69.20200540
    [12] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, doi: 10.7498/aps.69.20200288
    [13] 汤立国. 压电材料全矩阵材料常数超声谐振谱反演技术中的变温模式识别. 物理学报, doi: 10.7498/aps.66.027703
    [14] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, doi: 10.7498/aps.61.197703
    [15] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, doi: 10.7498/aps.57.5962
    [16] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, doi: 10.7498/aps.55.3711
    [17] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, doi: 10.7498/aps.53.2357
    [18] 卫崇德, 刘尊孝, 兰健, 孙允希, 甘子钊, 任洪涛, 肖玲, 贺庆. 熔融织构YBCO的磁性. 物理学报, doi: 10.7498/aps.40.1694
    [19] 应祟福, 李明轩, 钟高琦, 刘献铎, 杨玉瑞. 控制超声测量用换能器首次波幅度比的方案. 物理学报, doi: 10.7498/aps.30.91
    [20] 超声处理组. 宽频带夹芯式压电换能器. 物理学报, doi: 10.7498/aps.25.85
计量
  • 文章访问数:  333
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-25
  • 修回日期:  2025-07-15
  • 上网日期:  2025-07-21

/

返回文章
返回