搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯狄拉克等离激元调控的第一性原理研究

李鹏飞 韩丽君 张琳 惠宁菊

引用本文:
Citation:

石墨烯狄拉克等离激元调控的第一性原理研究

李鹏飞, 韩丽君, 张琳, 惠宁菊

First-principles study of modulation of graphene Dirac plasmons

LI Pengfei, HAN Lijun, ZHANG Lin, HUI Ningju
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 石墨烯等离激元在红外-太赫兹波段具有高度局域化和动态可调性, 但其精准调控机制仍需深入探索. 本研究基于国产第一性原理计算软件ABACUS, 采用线性响应含时密度泛函理论方法, 结合截断库仑势消除层间耦合效应, 系统研究了石墨烯狄拉克等离激元的三类调控机制. 研究结果表明, 无论采用何种调控手段, 石墨烯狄拉克等离激元的色散关系均呈现出典型的双区域特征: 在长波区域, 其色散关系遵循$\sqrt{q}$的形式; 而在短波区域, 则逐渐过渡为准线性行为. 此外, 随着载流子浓度的增加, 等离激元的激发能量呈现系统性增强, 并遵循$\omega \propto n^{1/4}$的标度律; 施加双轴应变时, 等离激元激发能量随晶格常数的增大而线性降低; 引入六方氮化硼(hBN)作为基底时, 对原始结果影响较小, 仅导致整体能量发生轻微红移. 进一步地, 研究深入揭示了上述三种调控机制的物理起源. 这些结果为基于石墨烯/hBN异质结构的高性能动态光电器件设计提供了坚实的理论支撑.
    Graphene Dirac plasmons, which are collective oscillations of charge carriers behaving as massless Dirac fermions, have emerged as a transformative platform for nanophotonics due to their exceptional capability for deep subwavelength light confinement in the infrared-to-terahertz spectral region and their unique dynamic tunability. Although external controls such as electrostatic doping, mechanical strain, and substrate engineering are empirically known to be able to modulate plasmonic responses, a comprehensive and quantitative theoretical framework from first principles is essential to reveal the distinct efficiency and fundamental mechanisms of each tuning strategy. To address this issue, we conduct a systematic first-principles study of three primary modulation pathways—carrier density, biaxial strain, and substrate integration—by using linear-response time-dependent density functional theory in the random-phase approximation (LR-TDDFT-RPA) as implemented in the computational code ABACUS. A truncated Coulomb potential is adopted in order to accurately model the isolated two-dimensional system, while structural and electronic properties are computed using the PBE functional with SG15 norm-conserving pseudopotentials and van der Waals corrections for heterostructures. Our research results indicate that modulating carrier concentration can cause the plasmon dispersion to follow the characteristic $\omega \propto n^{1/4}$ scaling law, thereby tuning within a wide range from 0.45 eV to 1.38 eV at the Landau damping threshold—a 207% change for the carrier density varying from 0.005 electrons per unit cell to 0.1 electrons, although efficiency decreases at higher concentrations due to the sublinear nature of the scaling law. Biaxial strain linearly changes the plasmon energy by modifying the Fermi velocity ($v_{\mathrm{F}}$) near the Dirac point, yielding a 30.4% tuning range (0.78–1.12 eV) under $\pm 10{\text{%}}$ strain. Introducing an hBN substrate induces a small band gap ($\sim 43$ meV) and causes a general redshift in plasmon energy due to band renormalization, while remarkably preserving the linear strain-tuning capability in a $30.1{\text{%}}$ energy range (0.72–1.03 eV) in the heterostructure, demonstrating robust compatibility between strain engineering and substrate integration. These results quantitatively elucidate the different physical mechanisms—Fermi level shifting, Fermi velocity modification, and substrate-induced symmetry breaking and hybridization—underpinning each strategy, thereby providing a solid theoretical foundation for designing dynamically tunable optoelectronic devices based on graphene and its van der Waals heterostructures.
  • 图 1  石墨烯的电子结构及等离激元分布 (a) 石墨烯的倒空间结构及高对称点位置与高对称路径方向, 红线和蓝线分别表示从K点出发的$ \varGamma-K $方向和$ \varGamma-M $方向; (b) 石墨烯能带图, 其中黑色曲线表示占据态, 红色曲线表示非占据态; (c) 石墨烯态密度图, 黑色线表示总态密度, 红色线为π能带态密度分布, 蓝色线为σ能带态密度分布; (d) 石墨烯在0.03电子/原胞掺杂浓度时沿$ \varGamma-M $方向不同q值对应的电子能量损失谱, 其中q的取值范围为0.029/Å 到0.294/Å

    Fig. 1.  Graphene’s electronic structure and plasmon distributions (a) the reciprocal space structure of graphene along with the positions of high-symmetry points and the directions of high-symmetry paths, where the red and blue lines represent the $ \varGamma-K $ and $ \varGamma-M $ directions from the K point, respectively; (b) graphene's band structure, where the black curve denotes the occupied states and the red curve represents the unoccupied states; (c) graphene's density of states (DOS), with the black line indicating the total DOS, the red line showing the projected DOS of the π-band, and the blue line displaying the projected DOS of the σ-band; (d) electron energy loss spectroscopy (EELS) of graphene along the $ \varGamma-M $ direction for different q values at 0.03 electrons/unit cell concentration, where q ranges from 0.029/Å to 0.294/Å.

    图 2  石墨烯狄拉克等离激元分布及色散图 (a) 沿$ \varGamma-M $方向的分布; (b) 沿$ \varGamma-K $方向的分布; (c) 两种不同方向二维狄拉克等离激元色散关系的对比图, 其中蓝色竖虚线代表费米波矢$ k_F $的位置

    Fig. 2.  The distribution and dispersion behaviors of graphene Dirac plasmons. (a) distributions along the $ \varGamma-M $ direction; (b) distributions along the $ \varGamma-K $ direction; (c) A comparative of the dispersion relationships for two-dimensional Dirac plasmons along $ \varGamma-M $ and $ \varGamma-K $ directions, where the blue vertical dashed line represents the position of the Fermi wave vector $ k_F $.

    图 3  载流子浓度对石墨烯狄拉克等离激元的调控 (a) 不同载流子浓度下沿$ \varGamma-M $方向的等离激元色散关系, 正值表示电子掺杂, 负值表示空穴掺杂, 子图为同浓度下电子/空穴掺杂的色散行为对比; (b) 狄拉克等离激元阈值能量随载流子浓度的演化规律

    Fig. 3.  Modulation of graphene Dirac plasmons by carrier concentrations. (a) Plasmon dispersion along the $ \varGamma-M $ direction under varied carrier concentrations. Positive/negative values indicate electron/hole doping. Inset: comparative dispersion behavior of electron- and hole-doped systems at identical carrier concentration; (b) Evolution of Dirac plasmon threshold energy as a function of carrier concentration.

    图 4  双轴应变对石墨烯狄拉克等离激元的调控 (a) 10%压缩应变下石墨烯的能带结构, 其中红线表示非占据态, 黑线表示占据态; (b) 掺杂浓度为0.03电子/原胞时, 不同程度双轴应变下石墨烯狄拉克等离激元沿$ \varGamma-M $方向的色散关系; (c) 狄拉克等离激元阈值能量随双轴应变大小的演化规律

    Fig. 4.  Tuning graphene Dirac plasmons via biaxial strain. (a) Band structure of graphene under 10%! compressive strain, the red lines represent the unoccupied states and the black lines represent the occupied states; (b) Dispersion relation of Dirac plasmons under varying biaxial strains along the $ \varGamma-M $ direction at 0.03 electrons per unit cell; (c) Evolution of Dirac plasmon threshold energy with biaxial strain.

    图 5  基底引入对石墨烯狄拉克等离激元的调控 (a) 石墨烯/六角氮化硼异质结在费米能级附近的能带结构, 其中黑线表示石墨烯的贡献, 红线表示六方氮化硼的贡献; (b) 掺杂浓度为0.03电子/原胞时, 纯石墨烯与石墨烯/六角氮化硼沿$ \varGamma-M $方向狄拉克等离激元色散关系对比图; (c) 掺杂浓度为0.03电子/原胞时, 不同程度双轴应变下石墨烯/六角氮化硼狄拉克等离激元沿$ \varGamma-M $方向的色散关系; (d) 石墨烯/六角氮化硼狄拉克等离激元阈值能量随双轴应变大小的演化规律

    Fig. 5.  Tuning graphene Dirac plasmons via substrate integration. (a) Band structure of graphene/hexagonal boron nitride(hBN) heterostructure near the Fermi level, where the black line indicates the contribution from graphene and the red line represents the contribution from hBN; (b) Dirac plasmon dispersions along $ \varGamma-M $ direction at 0.03 electrons per unit cell; (c) Strain-dependent Dirac plasmon dispersions(graphene/hBN) under biaxial strains (–10% to 10%); (d) Evolution of plasmon threshold energy with biaxial strain in graphene/hBN heterostructure.

    图 6  石墨烯等离激元激发能与载流子浓度($ n^{1/4} $)在固定波矢处(q = 0.029/Å)的标度关系

    Fig. 6.  Scaling relation between plasmon excitation energy and carrier concentration($ n^{1/4} $) in graphene at fixed wave vector (q = 0.029/Å).

    图 7  双轴应变与基底引入调控石墨烯等离激元机制 (a) 狄拉克锥斜率对等离激元激发的影响示意图; (b) 施加不同应变(–10%压缩应变到10%拉伸应变)对石墨烯K点附近能带结构的影响; (c) 基底效应诱变能带形变对等离激元激发的影响示意图; (d) 纯净石墨烯与石墨烯/六角氮化硼异质结K点附近能带结构对比

    Fig. 7.  Mechanisms for tuning graphene plasmons via biaxial strain and substrate effects. (a) The impact of Dirac cone slope on plasmon excitations; (b) Strain-dependent band structure near K-point under varying biaxial strains (–10% compressive to 10% tensile); (c) Substrate-induced band deformation modulating plasmon excitation; (d) Band structure comparison near K-point: pristine graphene vs. graphene/hBN heterostructure.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D e, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [4]

    杨晓霞, 孔祥天, 戴庆 2018 物理学报 64 106801

    Yang X X, Kong X T, Dai Q 2018 Acta Phys. Sin. 64 106801

    [5]

    杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全 2024 物理学报 67 157802

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 67 157802

    [6]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar

    [7]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369Google Scholar

    [8]

    Fei Z, Rodin A, Andreev G O, Bao W Z, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [9]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Javier García de Abajo F, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [10]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar

    [11]

    Basov D N, Fogler M M, García de Abajo F J 2016 Science 354 aag1992Google Scholar

    [12]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar

    [13]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [14]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749Google Scholar

    [15]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [16]

    Zhang H Y, Fan X D, Wang D L, Zhang D B, Li X G, Zeng C G 2022 Phys. Rev. Lett. 129 237402Google Scholar

    [17]

    Zhao W Y, Wang S X, Chen S D, Zhang Z C, Kenji W, Takashi T, Alex Z, Wang F 2023 Nature 614 688Google Scholar

    [18]

    Li P F, Ren X G, He L X 2017 Phys. Rev. B 96 165417Google Scholar

    [19]

    Ju L, Geng B S, Jason H, Caglar G, Michael M, Hao Z, A B H, Liang X, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar

    [20]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394Google Scholar

    [21]

    Ni G X, Wang L, Goldflam M, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Neto A H C, Hone J, Fogler M M, Basov D N 2016 Nat. Photon. 10 244Google Scholar

    [22]

    Chen M H, Guo G C, He L X 2010 J. Phys. Condens. Mat. 22 445501Google Scholar

    [23]

    Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C, He L X 2016 Comp. Mater. Sci. 112 503Google Scholar

    [24]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Wu Y Y, Li G L, Camden J P 2017 Chem. Rev. 118 2994

    [27]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar

    [28]

    Silkin V M, Chulkov E V, Echenique P M 2004 Phys. Rev. Lett. 93 176801Google Scholar

    [29]

    Yuan Z, Gao S W 2009 Comput. Phys. Commun. 180 466Google Scholar

    [30]

    Mowbray D J 2014 Phys. Status Solidi B 251 2509Google Scholar

    [31]

    Li P F, Shi R, Lin P Z, Ren X G 2023 Phys. Rev. B 107 035433Google Scholar

    [32]

    Li P F, Hui N J 2025 Vacuum 240 114424Google Scholar

    [33]

    Adler S L 1962 Phys. Rev. 126 413Google Scholar

    [34]

    Wiser N 1963 Phys. Rev. 129 62Google Scholar

    [35]

    Petersilka M, Gossmann U J, Gross E K U 1996 Phys. Rev. Lett. 76 1212Google Scholar

    [36]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar

    [37]

    Antonio P, Gennaro C 2014 Nanoscale 6 10927Google Scholar

    [38]

    Pisarra M, Sindona A, Riccardi P, Silkin V M, Pitarke J M 2014 New J. Phys. 16 083003Google Scholar

    [39]

    Pines D 1956 Can. J. Phys. 34 1379Google Scholar

    [40]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418Google Scholar

    [41]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403Google Scholar

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318Google Scholar

    [43]

    Marchiani D, Tonelli A, Mariani C, Frisenda R, Avila J, Dudin P, Jeong S, Ito Y, Magnani F S, Biagi R, et al 2022 Nano Lett. 23 170

    [44]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [45]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [46]

    Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N 2009 Nat. Nanotechnol. 4 562Google Scholar

    [47]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [48]

    Yasumasa H, Keita K 2012 Phys. Rev. B 86 165430Google Scholar

    [49]

    Wang L J, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147Google Scholar

    [50]

    Drogowska-Horna K A, Mirza I, Rodriguez A, Kovaříček P, Sládek J, Derrien T J Y, Gedvilas M, Račiukaitis G, Frank O, Bulgakova N M, Kalbáč M 2020 Nano Res. 13 2332Google Scholar

    [51]

    Lyu B S, Chen J J, Wang S, Lou S, Shen P Y, Xie J X, Qiu L, Mitchell I, Li C, Hu C, Zhou X L, Watanabe K, Taniguchi T, Wang X Q, Jia J F, Liang Q, Chen G, Li T X, Wang S Y, Ouyang W G, Hod O, Ding F, Urbakh M, Shi Z W 2024 Nature 628 758Google Scholar

    [52]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, et al 2010 Nat. Nanotechnol. 5 722Google Scholar

    [53]

    Cassabois G, Valvin P, Gil B 2016 Nat. Photon. 10 262Google Scholar

    [54]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [55]

    罗曼, 周杨, 成田恬, 孟雨欣, 王奕锦, 鲜佳赤, 秦嘉怡, 余晨辉 2024 光子学报 53 0753307Google Scholar

    Luo M, Zhou Y, Cheng T T, Meng Y X, Wang Y J, Xian J C, Qin J Y, Yu C H 2024 Acta Photon. Sin. 53 0753307Google Scholar

    [56]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [57]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, doi: 10.7498/aps.73.20240489
    [2] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, doi: 10.7498/aps.73.20240992
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, doi: 10.7498/aps.72.20221630
    [4] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响. 物理学报, doi: 10.7498/aps.72.20230736
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, doi: 10.7498/aps.71.20211631
    [6] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20211796
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211631
    [8] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210621
    [9] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, doi: 10.7498/aps.70.20201619
    [10] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [11] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [12] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, doi: 10.7498/aps.68.20190523
    [13] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, doi: 10.7498/aps.67.20172491
    [14] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, doi: 10.7498/aps.67.20180867
    [15] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.66.107102
    [16] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, doi: 10.7498/aps.66.057301
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, doi: 10.7498/aps.64.108402
    [18] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, doi: 10.7498/aps.63.154601
    [19] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, doi: 10.7498/aps.60.036104
    [20] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, doi: 10.7498/aps.59.7880
计量
  • 文章访问数:  283
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-11
  • 修回日期:  2025-08-29
  • 上网日期:  2025-09-17

/

返回文章
返回