搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍基Ruddlesden-Popper相高温超导薄膜的制备与优化

吕威 聂子豪 汪恒 陈亚奇 黄浩亮 周广迪 薛其坤 陈卓昱

引用本文:
Citation:

镍基Ruddlesden-Popper相高温超导薄膜的制备与优化

吕威, 聂子豪, 汪恒, 陈亚奇, 黄浩亮, 周广迪, 薛其坤, 陈卓昱

Preparation and optimization of nickelate based Ruddlesden-Popper nickelate high-temperature superconducting thin films

LV Wei, NIE Zihao, WANG Heng, CHEN Yaqi, HUANG Haoliang, ZHOU Guangdi, XUE Qikun, CHEN Zhuoyu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 常压镍基高温超导电性的发现, 为深入地探索镍基超导机理带来了新平台. 然而, Ruddlesden-Popper镍氧化物在热力学上处于亚稳态, 对其结构和氧含量的精准控制极具挑战. 本文介绍了利用强氧化原子逐层外延生长技术在LaAlO3和SrLaAlO4衬底上制备单相、高质量的Ln3Ni2O7(Ln为镧系元素)薄膜的系统方法. 其中, (La, Pr, Sm)3Ni2O7/SrLaAlO4超导薄膜的超导起始转变温度(Tc,onset)达到50 K. 阳离子化学计量偏差、逐层原子覆盖度、薄膜与衬底界面重构和氧化条件是影响薄膜Ln3Ni2O7晶体质量和超导性能的四个重要因素: 1)精准的阳离子化学计量控制会抑制晶体杂相的产生; 2)原子逐层的完整覆盖和3)优化的界面重构可以减少薄膜的堆垛层错; 4)准确的氧含量调控则是实现超导单转变和高Tc,onset的关键. 这些发现对各类氧化物高温超导薄膜的逐层外延生长具有借鉴意义.
    The discovery of ambient-pressure nickelate high-temperature superconductivity provides a new platform for further exploring the underlying superconducting mechanisms. However, the thermodynamic metastability of Ruddlesden-Popper nickelates Lnn+1NinO3n+1 (Ln = lanthanide) poses significant challenges for precise control over their structures and oxygen stoichiometry. This study establishes a systematic approach to growing phase-pure, high-quality Ln3Ni2O7 thin films on LaAlO3 and SrLaAlO4 substrates by using gigantic-oxidative atomic-layer-by-layer epitaxy. The films grown under an ultrastrong oxidizing ozone atmosphere are superconducting without further post-annealing. Specifically, the optimal Ln3Ni2O7/SrLaAlO4 superconducting film exhibits an onset transition temperature (Tc,onset) of 50 K. Four critical factors governing the crystalline quality and superconducting properties of Ln3Ni2O7 films are identified as follows. 1) Precise cation stoichiometric control suppresses secondary phase formation. In an Ni-rich sample (+7%), the thin film forms an Ln4Ni3O10 secondary phase, and the R-T curve correspondingly exhibits metallic behavior. In contrast, an Ni-deficient sample forms an Ln2NiO4 secondary phase, with its R-T curve indicating insulating behavior over the entire temperature range. 2) Complete atomic layer-by-layer coverage minimizes stacking faults. Deviation from ideal monolayer coverage induces in-plane atomic number mismatch, which directly triggers out-of-plane lattice collapse or uplift near bulk-equilibrium positions. 3) Optimized interface reconstruction can improve the atomic arrangement at the interface. This can be achieved through methods such as annealing the SrLaAlO4 substrate or pre-depositing a 0.5-unit-cell-thick Ln2NiO4-phase buffer layer, which enhances the energy difference between the Ln-site and Ni-site layers to promote proper stacking. 4) Accurate oxygen content regulation is essential for achieving a single superconducting transition and high Tc,onset. Although the under-oxidized sample demonstrates a relatively high Tc,onset (50 K), it displays a two-step superconducting transition. Conversely, the over-oxidized sample exhibits a reduced Tc,onset of 37 K and similarly manifests a two-step transition. These findings provide valuable insights into the layer-by-layer epitaxy growth of diverse oxide high-temperature superconducting films.
  • 图 1  (a) GAE生长示意图; n = 1, 2, 3, 4镍氧化物RP相 (b) XRD θ-2θ扫描结果和(c)结构示意图; (d) (00 4n+2)峰位对于RP相A/B位名义摩尔比的依赖关系[22]

    Fig. 1.  (a) Schematic diagram of GAE; (b) XRD θ-2θ scan results and (c) structural schematic diagram for RP phase nickelates with n = 1–4; (d) dependence of the (00 4n+2) peak position on the nominal A/B-site molar ratio of the RP phase[22].

    图 2  (a) SLAO衬底上富镍7%(S1)、阳离子化学计量平衡(S2)和缺镍11%(S3)(La, Pr, Sm)3Ni2O7样品XRD θ-2θ扫描结果; (b) R-T曲线和(c) 起始转变区域放大图. 阳离子化学计量通过改变LnOx与NiOx靶材的轰击脉冲数比例实现调控

    Fig. 2.  (a) XRD θ-2θ scans and (b) R-T curves for 7% Ni-rich (S1), cation-stoichiometric (S2), and 11% Ni-deficient (S3) (La, Pr, Sm)3Ni2O7 samples on SLAO substrates; (c) an enlarged plot showing the onset of the transition. The cation stoichiometry is controlled by the pulse ratio of the LnOx and NiOx targets.

    图 3  阳离子化学计量平衡样品 (a) RHEED振荡曲线及其(b) 生长前后RHEED衍射图样; 缺镍11%样品(c), (d)和富镍7%样品(e), (f) RHEED振荡曲线及其区域放大图. 各样品中LnOx层的沉积对应了RHEED强度的下降, 而NiOx层的沉积则会使得强度上升

    Fig. 3.  (a) RHEED intensity oscillations and (b) diffraction patterns before and after growth for the cation-stoichiometric sample; RHEED oscillation curves and their zoom-in views for the (c), (d) Ni-deficient (–11%) and (e), (f) Ni-rich (+7%) sample. For all samples, the deposition of the LnOx layer corresponds to a decrease in RHEED intensity, while that of the NiOx layer leads to an increase.

    图 4  逐层原子覆盖度分别为116.0%, 101.5%和100.0%样品 (a) XRD θ-2θ扫描结果; (b) X射线反射率及其相应(c) R-T曲线. 样品的逐层原子覆盖度通过同比缩放LnOx与NiOx轰击脉冲数实现调控

    Fig. 4.  (a) XRD θ-2θ scan results, (b) X-ray reflectivity profiles, and their corresponding (c) R-T curves for samples with layer-by-layer atomic coverages of 116.0%, 101.5%, and 100.0%, respectively. The layer-by-layer atomic coverage is controlled by proportionally scaling the number of laser pulses for the LnOx and NiOx targets.

    图 5  在未处理(S7)、退火处理(S8)和预沉积缓冲层(S2)衬底上生长(La, Pr, Sm)3Ni2O7薄膜 (a) 结构示意图; (b) RHEED振荡曲线; (c) XRD θ-2θ扫描结果; (d) R-T曲线. 其中, S2样品的生长臭氧分压为1.2×10–2 mbar, S7和S8样品则为2.0×10–2 mbar, 其他生长参数保持一致. S8样品较低的Tc,onset源于样品的过氧化

    Fig. 5.  (La, Pr, Sm)3Ni2O7 thin films grown on as-received (S7), annealed (S8), and pre-deposited buffer layer (S2) substrates: (a) Structural schematic diagrams; (b) RHEED intensity oscillations; (c) XRD θ-2θ scan results; (d) R-T curves. The ozone partial pressure during growth was 1.2×10–2 mbar for sample S2, and 2.0×10–2 mbar for samples S7 and S8, while all other growth parameters were kept consistent. The lower Tc of S8 originates from over-oxidation.

    图 6  臭氧分压分别为1.0×10–2, 1.2×10–2 和2.0×10–2 mbar下, (La, Pr, Sm)3Ni2O7薄膜的XRD θ-2θ扫描结果(a)和R-T曲线(b)

    Fig. 6.  XRD θ-2θ scan results (a) and R-T curves (b) for (La, Pr, Sm)3Ni2O7 thin films deposited at ozone partial pressures of 1.0×10–2, 1.2×10–2, and 2.0×10–2 mbar.

  • [1]

    Anisimov V, Bukhvalov D, Rice T 1999 Phys. Rev. Lett. 59 7901

    [2]

    Chaloupka J, Khaliullin G 2008 Phys. Rev. Lett. 100 016404Google Scholar

    [3]

    Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109Google Scholar

    [4]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [5]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [6]

    Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003Google Scholar

    [7]

    Osada M, Wang B Y, Lee K, Li D F, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [8]

    Lee K, Wang B Y, Osada M, Goodge B H, Wang T C, Lee Y, Harvey S, Kim W J, Yu Y J, Murthy C, Raghu S, Kourkoutis L F, Hwang H Y 2023 Nature 619 288Google Scholar

    [9]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [10]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58Google Scholar

    [11]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [12]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N A, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W E, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [13]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [14]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [15]

    Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117402Google Scholar

    [16]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [17]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [18]

    Luo X Y, Chen H, Li Y H, Gao Q, Yin C H, Yan H T, Miao T M, Luo H L, Shu Y J, Chen Y W, Lin C T, Zhang S J, Wang Z M, Zhang F F, Yang F, Peng Q J, Liu G D, Zhao L, Xu Z Y, Xiang T, Zhou X J 2023 Nat. Phys. 19 1841Google Scholar

    [19]

    Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S, Kondo T 2017 Phys. Rev. Lett. 119 217001Google Scholar

    [20]

    Wang Z C, Zou C W, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227Google Scholar

    [21]

    Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Natl. Sci. Rev. 12 nwae429Google Scholar

    [22]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 18Google Scholar

    [23]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 17Google Scholar

    [24]

    Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 17 1221

    [25]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251Google Scholar

    [26]

    Aggarwal L, Bozovic I 2024 Materials 17 2546Google Scholar

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [28]

    Li J Y, Chen C Q, Huang C X, Han Y F, Huo M W, Huang X, Ma P Y, Qiu Z Y, Chen J F, Hu X W, Chen L, Xie T, Shen B, Sun H L, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117403Google Scholar

    [29]

    Wu G Q, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [30]

    Pan G A, Song Q, Segedin D F, Jung M C, El-Sherif H, Fleck E E, Goodge B H, Doyle S, Carrizales D C, N’Diaye A T, Shafer P, Paik H, Kourkoutis L F, El Baggari I, Botana A S, Brooks C M, Mundy J A 2022 Phys. Rev. Mater. 6 055003Google Scholar

    [31]

    Sun W, Li Y, Cai X, Yang J, Guo W, Gu Z, Zhu Y, Nie Y 2021 Phys. Rev. B 104 184518Google Scholar

    [32]

    Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, Nie Y F 2020 APL Mater. 8 091112Google Scholar

    [33]

    Lei Q Y, Golalikhani M, Davidson B A, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R U, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D A, Hu M H, Guo J D, Singh R K, Xi X X 2017 npj Quantum Mater. 2 15Google Scholar

    [34]

    Barone M R, Dawley N M, Nair H P, Goodge B H, Holtz M E, Soukiassian A, Fleck E E, Lee K, Jia Y, Heeg T, Gatt R, Nie Y F, Muller D A, Kourkoutis L F, Schlom D G 2021 APL Mater. 9 021118Google Scholar

    [35]

    Kim J, Kim Y, Mun J, Choi W, Chang Y, Kim J R, Gil B, Lee J H, Hahn S, Kim H, Chang S H, Lee G D, Kim M, Kim C, Noh T W 2022 Small Methods 6 2200880Google Scholar

    [36]

    Liu G W, Yang T Y, Jiang Y X, Hossain S, Deng H B, Hasan M Z, Yin J X 2024 Quantum Front. 3 19Google Scholar

  • [1] 李泊玉, 胡柯钧, 林仁菊, 韩昆, 黄振, 葛炳辉, 宋东升. 无限层镍基超导薄膜界面结构的电子显微学研究. 物理学报, doi: 10.7498/aps.74.20250171
    [2] 郑姚远, 莫世聪, 吴为. 双层镍氧化物La3Ni2O7超导体理论研究近期进展与展望. 物理学报, doi: 10.7498/aps.74.20250711
    [3] 郭楠, 安志彤, 陈志辉, 丁翔, 李迟昊, 樊钰, 徐海超, 彭瑞. 三种原位原子氢还原手段对无限层镍氧化物超导体的优化. 物理学报, doi: 10.7498/aps.74.20250903
    [4] 张明鑫, 裴翠颖, 齐彦鹏. 三层镍氧化物高温超导研究进展. 物理学报, doi: 10.7498/aps.74.20251258
    [5] 张铭, 刘玉波, 邵芷嫣, 杨帆. Ruddlesden-Popper相层状镍基超导配对机理及相关物性的弱耦合理论研究. 物理学报, doi: 10.7498/aps.74.20251179
    [6] 陈卓昱, 黄浩亮, 薛其坤. 常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望. 物理学报, doi: 10.7498/aps.74.20250331
    [7] 肖志峰, 王守宇, 戴雅婷, 康新淼, 张振华, 刘卫芳. Ge掺杂增强Ruddlesden-Popper结构准二维Sr3Sn2O7陶瓷杂化非本征铁电性的物理机制. 物理学报, doi: 10.7498/aps.73.20240583
    [8] 冉峰, 梁艳, 张坚地. 氧化物异质界面上的准二维超导. 物理学报, doi: 10.7498/aps.72.20230044
    [9] 王朝, 张铭, 张持, 王如志, 严辉. n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf) 非常规铁电性的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202142
    [10] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响. 物理学报, doi: 10.7498/aps.70.20210012
    [11] 李丹, 李国庆. 氧化物隔离对Si基片上生长L10相FePt薄膜磁性的影响. 物理学报, doi: 10.7498/aps.67.20180387
    [12] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, doi: 10.7498/aps.67.20180317
    [13] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, doi: 10.7498/aps.67.20181681
    [14] 陈晓波, 廖红波, 张春林, 于春雷, 潘伟, 胡丽丽, 吴正龙. 掺铒的纳米相氟氧化物玻璃陶瓷的多光子红外量子剪裁. 物理学报, doi: 10.7498/aps.59.5091
    [15] 刘召军, 孟志国, 赵淑云, 郭海成, 吴春亚, 熊绍珍. 用镍硅氧化物源横向诱导晶化的多晶硅薄膜. 物理学报, doi: 10.7498/aps.59.2775
    [16] 陈莺飞, 彭 炜, 李 洁, 陈 珂, 朱小红, 王 萍, 曾 光, 郑东宁, 李 林. 高气压反射式高能电子衍射仪监控脉冲激光外延氧化物薄膜. 物理学报, doi: 10.7498/aps.52.2601
    [17] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长. 物理学报, doi: 10.7498/aps.48.1917
    [18] 陈祖耀, 唐凯斌, 钱逸泰, 盛正直, 王鲁闽. 新型1223相高Tc超导层型铜氧化物(Tl,M)(Sr,Ba)2Ca2Cu3Oz(M=Cr,V). 物理学报, doi: 10.7498/aps.44.795
    [19] 康晋锋, 陈新, 王佑祥, 韩汝琦, 熊光成, 连贵君, 李杰, 吴思诚. 正常态金属与氧化物高温超导薄膜界面扩散特性分析. 物理学报, doi: 10.7498/aps.44.1831
    [20] 余超凡, 陈斌, 何国柱. 非含Cu氧化物超导体的超导电性机制. 物理学报, doi: 10.7498/aps.43.1152
计量
  • 文章访问数:  319
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-11
  • 修回日期:  2025-09-17
  • 上网日期:  2025-09-30

/

返回文章
返回