搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相磁瓶式光电子谱仪及其在超快动力学领域中的应用

任百惠 于尧 闫鹏宇 王孟阳 孟胜 张鹏举

引用本文:
Citation:

液相磁瓶式光电子谱仪及其在超快动力学领域中的应用

任百惠, 于尧, 闫鹏宇, 王孟阳, 孟胜, 张鹏举

Design and application of liquid-phase magnetic-bottle time resolved photoelectron spectroscopy

REN Baihui, YU Yao, YAN Pengyu, WANG Mengyang, MENG Sheng, ZHANG Pengju
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 液相是化学和生物反应的关键环境, 由于溶剂化效应的存在, 液相分子的化学、生物反应动力学表现出显著区别于气相孤立分子的演化行为. 深入地研究液相分子的超快激发态动力学对于揭示复杂化学和生物过程的微观机制具有重要意义. 分子激发态的制备与演化通常发生在阿秒至皮秒的时间尺度, 光电子能谱不仅能够表征激发态分子的电子结构, 对分子构型的演化也很敏感, 被广泛用来研究激发态分子的超快动力学过程. 磁瓶式光电子谱仪、液体微束装置与高次谐波技术的结合, 可以在高真空条件下直接测量出射电子的能量分布及动力学演化信息, 是液相光电子能谱研究的核心手段. 本文系统地总结了该技术在液相超快动力学研究领域的最新进展, 详细地介绍了磁瓶式谱仪的基本工作原理、液体微束靶的制备方法; 讨论了其在生物分子激发态动力学演化、液相分子激发态非绝热过程、分子间库仑衰变和芳香族化合物水溶液的气-液界面性质等研究中的典型应用; 最后对技术瓶颈以及未来发展方向进行了探讨.
    The liquid phase serves as a critical environment for chemical and biological reactions. The chemical and biological reaction dynamics of molecules in liquids exhibit evolution behaviors that are significantly different from those of isolated molecules in the gas phase. The in-depth investigation of the ultrafast excited-state dynamics of liquid-phase molecules is of great importance for uncovering the microscopic mechanisms underlying complex chemical and biological processes. Photoelectron spectroscopy not only reveals the electronic structure of excited-state molecules but also exhibits high sensitivity to structural changes, making it a powerful tool for studying the relaxation dynamics. Liquid-phase time-resolved photoelectron spectroscopy utilizes a liquid microjet within a high vacuum. In this pump-probe technique, an initial pump pulse excites the liquids to initiate dynamics, followed by a delayed probe pulse that ionizes the evolving system. The time-dependent energy distribution of the resulting photoelectrons, which encodes the ultrafast dynamics, is measured by a magnetic-bottle time-of-flight (TOF) analyzer. This review systematically summarizes recent advancements in the time-resolved liquid-phase photoelectron spectroscopy technology for studying ultrafast dynamics in liquids, detailing the fundamental working principles of magnetic-bottle spectrometers and the preparation techniques for liquid microjet targets. Furthermore, typical applications are discussed, concluding with an analysis of current technical challenges and future research directions.
  • 图 1  TRPES测量原理和光电子动能分布示意图

    Fig. 1.  Schematic illustration of TRPES and photoelectron kinetic energy distribution.

    图 2  磁瓶谱仪的磁感线分布示意图

    Fig. 2.  Magnetic field line distribution in a magnetic bottle spectrometer.

    图 3  磁瓶式光电子谱仪示意图, 其中液体靶及相关部分以蓝色显示

    Fig. 3.  Schematic overview of the time-of-flight spectrometer with magnetic-bottle operation. The liquid target and related components are highlighted in blue.

    图 4  Nozzle喷嘴的实物图和示意图(出自文献[38], 已获得授权)

    Fig. 4.  Physical diagram and schematic diagram of nozzle, reproduced with permission from Ref. [38].

    图 5  气体高次谐波产生的三步模型原理示意图

    Fig. 5.  Schematic diagram of the principle of gas high-harmonic generation.

    图 6  高次谐波产生气室示意图. EW为激光入射窗, 聚集到接近小孔P1处. 在高压区HP注入气体, 通过两个小孔P2和P3及DP1和DP2差分泵保持低真空

    Fig. 6.  Schematic diagram of the high-harmonic generation gas cell. The fundamental beam is focused through the entrance window EW such that the focus is located close to pinhole P1. The high-pressure region HP is separated from the experiment by two differential pumping stages DP1 and DP2. The corresponding pinholes are P2 and P3.

    图 7  单色仪的光学布局示意图

    Fig. 7.  Optical layout of the monochromator.

    图 8  锥形衍射光栅原理示意图

    Fig. 8.  Conical diffraction scheme.

    图 9  LJ-TRPES泵浦-探测实验示意图(出自文献[38], 已获得授权)

    Fig. 9.  Schematic diagram of the LJ-TRPES pump-probe experiment, reproduced with permission from Ref.[38].

    图 10  顺式二苯乙烯非绝热弛豫示意图(出自文献[49], 已获得授权)

    Fig. 10.  Schematic for non-adiabatic relaxation in cis-stilbene, reproduced with permission from Ref.[49].

    图 11  (a) 由水二聚体中2a1轨道电离引发的ICD过程的示意图. 内价层空位是由XUV光子的吸收产生的; 外价电子通过向相邻的水分子释放额外的能量来填充内价空位, 导致其外价轨道进一步电离; (b) 光电子测量实验装置示意图; (c) 数据采集和分析示意图. 出自文献[64], 已获得授权

    Fig. 11.  (a) Schematic representation of the ICD process initiated by inner-valence ionization of 2a1 orbital in water dimer. The inner-valence vacancy is created by the absorption of an XUV photon; an outer-valence electron fills up the inner-valence vacancy via releasing the extra energy to the neighboring water molecule causing a further ionization in its outer-valence orbital; (b) the experimental setup for the photoelectron measurement; (c) schematic diagram of data acquisition and analysis, reproduced with permission from Ref. [64].

    图 12  液态水中ICD和质子转移的简化示意图(出自文献[65], 已获得授权)

    Fig. 12.  A simplified schematic diagram of ICD and proton transfer in liquid water, reproduced with permission from Ref. [65].

    表 1  不同初始动能电子的能量分辨模拟结果

    Table 1.  Simulated energy resolution at different initial electron kinetic energies.

    E/eVT0/ns$ \Delta t $/ns$ \Delta E/E $
    10821.015.60.038
    30493.08.80.036
    50382.57.30.038
    100275.07.70.056
    下载: 导出CSV
  • [1]

    Heitele H 1993 Angew. Chem. Int. Ed. Engl. 32 359Google Scholar

    [2]

    Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O 2024 Nat. Commun. 15 8903Google Scholar

    [3]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar

    [4]

    Venkatraman R K, Orr-Ewing A J. 2021 Acc. Chem. Res. 54 4383Google Scholar

    [5]

    Faubel M, Schlemmer S, Toennies J P 1988 Z. Phys. D: At. Mol. Clusters 10 269Google Scholar

    [6]

    Winter B, Faubel M 2006 Chem. Rev. 106 1176Google Scholar

    [7]

    Jordan I, Huppert M, Brown M A, van Bokhoven J A, Wörner H J 2015 Rev. Sci. Instrum. 86 123905Google Scholar

    [8]

    Improta R, Santoro F, Blancafort L 2016 Chem. Rev. 116 3540Google Scholar

    [9]

    Tusche C, Chen Y J, Schneider C M, Schneider C M, Kirschner J 2019 Ultramicroscopy 206 112815Google Scholar

    [10]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463.Google Scholar

    [12]

    Tsuboi T, Xu E Y, Bae Y K, Gillen K T 1988 Rev. Sci. Instrum. 59 1357Google Scholar

    [13]

    Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003Google Scholar

    [14]

    Stolow A, Bragg A E, Neumark D M 2004 Chem. Rev. 104 1719Google Scholar

    [15]

    von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner H J 2018 Nat. Commun. 9 3162Google Scholar

    [16]

    Zhang P, Hoang V H, Wang C, Luu T T, Svoboda V, Le A T, Wörner H J 2023 Phys. Rev. Lett. 130 153201Google Scholar

    [17]

    Stolow A 2003 Annu. Rev. Phys. Chem. 54 89Google Scholar

    [18]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [19]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [20]

    Worth G A, Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127Google Scholar

    [21]

    Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martín F, Nisoli M 2014 Science 346 336Google Scholar

    [22]

    Riley J W, Wang B, Woodhouse J L, Assmann M, Worth G A, Fielding H H 2018 J. Phys. Chem. Lett. 9 678Google Scholar

    [23]

    Rijs A M, Backus E H G, De Lange C A, Westwood N P C, Janssen M H M 2000 J. Electron. Spectrosc. Relat. Phenom. 112 151Google Scholar

    [24]

    Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Wörner H J 2020 Science 369 974Google Scholar

    [25]

    Seidel R, Thürmer S, Winter B 2011 J. Phys. Chem. Lett. 2 633Google Scholar

    [26]

    Faubel M, Siefermann K R, Liu Y, Abel B 2012 Acc. Chem. Res. 45 120Google Scholar

    [27]

    Erickson B A, Heim Z N, Pieri E, Liu E, Martinez T J, Neumark D M 2019 J. Phys. Chem. A 123 10676Google Scholar

    [28]

    Nishitani J, Karashima S, West C W, Suzuki T 2020 J. Chem. Phys. 152 144503Google Scholar

    [29]

    West C W, Nishitani J, Higashimura C, Suzuki T 2021 Mol. Phys. 119 1748240Google Scholar

    [30]

    Perry C F, Jordan I, Zhang P, von Conta A, Nunes F B, Wörner H J 2021 J. Phys. Chem. Lett. 12 2990Google Scholar

    [31]

    Stemer D, Buttersack T, Haak H, Malerz S, Schewe H C, Trinter F, Mudryk K, Pugini M, Credidio B, Seidel R, Hergenhahn U, Meijer G, Thürmer S, Winter B 2023 J. Chem. Phys. 158 234202Google Scholar

    [32]

    Nishitani J, West C W, Suzuki T 2017 Struct. Dyn. 4 044014Google Scholar

    [33]

    Kruit P, Read F H 1983 J. Phys. E: Sci. Instrum. 16 313Google Scholar

    [34]

    Neumark D M 2001 Annu. Rev. Phys. Chem. 52 255Google Scholar

    [35]

    Kurahashi N, Thürmer S, Liu S Y, Yamamoto Y, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T 2021 Struct. Dyn. 8 034303Google Scholar

    [36]

    Borne K, O’Neal J T, Wang J, Isele E, Obaid R, Berrah N, Cheng X, Bucksbaum P H, James J, Kamalov A, Larsen K A, Li X, Lin M F, Liu Y, Marinelli A, Summers A M, Thierstein E, Wolf T J A, Rolles D, Walter P, Cryan J P, Driver T 2024 Rev. Sci. Instrum. 95 125110Google Scholar

    [37]

    Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J. 2018 Rev. Sci. Instrum. 89 053103Google Scholar

    [38]

    Perry C F 2021 Ph. D. Dissertation ( Zurich: ETH Zurich

    [39]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [40]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117Google Scholar

    [41]

    von Conta A, Huppert M, Wörner H J 2016 Rev. Sci. Instrum. 87 073102Google Scholar

    [42]

    Wang H, Xu Y, Ulonska S, Robinson J S, Ranitovic P, Kaindl R A 2015 Nat. Commun. 6 7459Google Scholar

    [43]

    Yang Y, Neumann T, Hengster J, Mainz R E, Elsner J, Mücke O D, Kärtner F X, Uphues T 2024 Photonics 11 525Google Scholar

    [44]

    Poletto L, Frassetto F 2010 Appl. Opt. 49 5465Google Scholar

    [45]

    Nelson T R, White A J, Bjorgaard J A, Sifain A E, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg A E, Tretiak S 2020 Chem. Rev. 120 2215Google Scholar

    [46]

    Bircher M P, Liberatore E, Browning N J, Brickel S, Hofmann C, Patoz A, Unke O T, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner H J, Vaníček J, Rothlisberger U 2017 Struct. Dyn. 4 061510Google Scholar

    [47]

    Harris S J, Murdock D, Zhang Y, Oliver T A A, Grubb M P, Orr-Ewing A J, Greetham G M, Clark I P, Towrie M, Bradforth S E, Ashfold M N R 2013 Phys. Chem. Chem. Phys. 15 6567Google Scholar

    [48]

    Heim Z N, Neumark D M. 2022 Acc. Chem. Res. 55 3652Google Scholar

    [49]

    Wang C, Waters M D J, Zhang P, Suchan J, Svoboda V, Luu T T, Perry C, Yin Z, Slavíček P, Wörner H J 2022 Nat. Chem. 14 1126Google Scholar

    [50]

    Cederbaum L S, Zobeley J, Tarantelli F 1997 Phys. Rev. Lett. 79 4778Google Scholar

    [51]

    Jahnke T, Czasch A, Schöffler M S, Schössler S, Knapp A, Käsz M, Titze J, Wimmer C, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Hergenhahn U, Schmidt-Böcking H, Dörner R 2004 Phys. Rev. Lett. 93 163401Google Scholar

    [52]

    Alizadeh E, Orlando T M, Sanche L. 2015 Annu. Rev. Phys. Chem. 66 379Google Scholar

    [53]

    Marburger S, Kugeler O, Hergenhahn U, Möller T 2003 Phys. Rev. Lett. 90 203401Google Scholar

    [54]

    Jahnke T, Czasch A, Schöffler M, Schössler S, Käsz M, Titze J, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Schmidt L Ph H, Weber T, Schmidt-Böcking H, Ueda K, Dörner R 2007 Phys. Rev. Lett. 99 153401Google Scholar

    [55]

    Sakai K, Stoychev S, Ouchi T, Higuchi I, Schöffler M, Mazza T, Fukuzawa H, Nagaya K, Yao M, Tamenori Y, Kuleff A I, Saito N, Ueda K 2011 Phys. Rev. Lett. 106 033401Google Scholar

    [56]

    Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402Google Scholar

    [57]

    Iskandar W, Matsumoto J, Leredde A, Fléchard X, Gervais B, Guillous S, Hennecart D, Méry A, Rangama J, Zhou C L, Shiromaru H, Cassimi A 2015 Phys. Rev. Lett. 114 033201Google Scholar

    [58]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [59]

    Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139Google Scholar

    [60]

    Ren X, Wang E, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [61]

    Zhou J, Jia S, Skitnevskaya A D, Wang E, Hähnel T, Grigoricheva E K, Xue X, Li J X, Kuleff A I, Dorn A, Ren X 2022 J. Phys. Chem. Lett. 13 4272Google Scholar

    [62]

    Shcherbinin M, LaForge A C, Sharma V, Devetta M, Richter R, Moshammer R, Pfeifer T, Mudrich M 2017 Phys. Rev. A 96 013407Google Scholar

    [63]

    Kazandjian S, Rist J, Weller M, Wiegandt F, Aslitürk D, Grundmann S, Kircher M, Nalin G, Pitters D, Vela Pérez I, Waitz M, Schiwietz G, Griffin B, Williams J B, Dörner R, Schöffler M, Miteva T, Trinter F, Jahnke T, Sisourat N 2018 Phys. Rev. A 98 050701Google Scholar

    [64]

    Zhang P, Perry C, Luu T T, Matselyukh D, Wörner H J 2022 Phys. Rev. Lett. 128 133001Google Scholar

    [65]

    Zhang P, Trester J, Dubský J, Kolorenč P, Slavíček P, Wörner H J 2025 Nat. Commun. 16 6732Google Scholar

    [66]

    Jungwirth P, Tobias D J. 2006 Chem. Rev. 106 1259Google Scholar

    [67]

    Tobias D J, Stern A C, Baer M D, Levin Y, Mundy C J 2013 Annu. Rev. Phys. Chem. 64 339Google Scholar

    [68]

    Knipping E M, Lakin M J, Foster K L, Jungwirth P, Tobias D J, Gerber R B, Dabdub D, Finlayson-Pitts B J 2000 Science 288 301Google Scholar

    [69]

    Yamamoto Y I, Hirano T, Ishiyama T, Morita A, Suzuki T 2025 J. Am. Chem. Soc. 147 4026Google Scholar

    [70]

    Menzi S, Knopp G, Al Haddad A, Augustin S, Borca C, Gashi D, Huthwelker T, James D, Jin J, Pamfilidis G, Schnorr K, Sun Z, Wetter R, Zhang Q, Cirelli C 2020 Rev. Sci. Instrum. 91 105109Google Scholar

    [71]

    Koga M, Kang D H, Heim Z N, Meyer P, Erickson B A, Haldar N, Baradaran N, Havenith M, Neumark D M 2024 Phys. Chem. Chem. Phys. 26 13106Google Scholar

    [72]

    Koga M, Kang D H, Heim Z N, Haldar N, Neumark D M 2025 arXiv: 2503. 16840.

    [73]

    Ekimova M, Quevedo W, Faubel M, Wernet P, Nibbering E T J. 2015 Struct. Dyn. 2 054301Google Scholar

    [74]

    Kumar G, Roy A, McMullen R S, Kutagulla S, Bradforth S E 2018 Faraday Discuss. 212 359Google Scholar

    [75]

    Tzankov P, Zheng J, Mero M, Polli D, Manzoni C, Cerullo G 2006 Opt. Lett. 31 3629Google Scholar

    [76]

    Liebel M, Schnedermann C, Kukura P. 2014 Opt. Lett. 39 4112Google Scholar

  • [1] 李义典, 杨乐仙. 层状镍基超导体的电子结构和超快动力学. 物理学报, doi: 10.7498/aps.74.20250856
    [2] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针. 物理学报, doi: 10.7498/aps.74.20250546
    [3] 王慧勇, 李铭轩, 罗嗣佐, 丁大军. 高能量分辨光电子干涉仪研究进展. 物理学报, doi: 10.7498/aps.74.20250534
    [4] 朱孝先, 高亦谈, 王一鸣, 赵昆. 飞行时间光电子谱仪在超快光学测量实验中的应用. 物理学报, doi: 10.7498/aps.74.20250698
    [5] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, doi: 10.7498/aps.73.20240047
    [6] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, doi: 10.7498/aps.71.20220458
    [7] 郑镇法, 蒋翔, 褚维斌, 张丽丽, 郭宏礼, 赵传寓, 王亚南, 王傲雷, 郑奇靖, 赵瑾. 凝聚态体系中激发态载流子动力学研究. 物理学报, doi: 10.7498/aps.70.20210626
    [8] 向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰. 苯乙炔分子电子激发态超快动力学研究. 物理学报, doi: 10.7498/aps.70.20201473
    [9] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究. 物理学报, doi: 10.7498/aps.69.20200092
    [10] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, doi: 10.7498/aps.69.20191816
    [11] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, doi: 10.7498/aps.67.20181334
    [12] 范伟, 谷渝秋, 朱斌, 税敏, 单连强, 杜赛, 辛建婷, 赵宗清, 周维民, 曹磊峰, 张学如, 王玉晓. 一种超快时间分辨速度干涉仪的设计和理论研究. 物理学报, doi: 10.7498/aps.63.060703
    [13] 胡浩丰, 王晓雷, 郭文刚, 翟宏琛, 王攀. 强飞秒激光烧蚀石英玻璃的超快时间分辨光学诊断. 物理学报, doi: 10.7498/aps.60.017901
    [14] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 用超快电子衍射技术研究Al薄膜的超快动力学行为. 物理学报, doi: 10.7498/aps.58.5546
    [15] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化. 物理学报, doi: 10.7498/aps.58.5539
    [16] 胡浩丰, 王晓雷, 李智磊, 张楠, 翟宏琛. 飞秒激光烧蚀铝靶产生喷射物的超快脉冲数字全息诊断. 物理学报, doi: 10.7498/aps.58.7662
    [17] 李 毅, 易新建, 蔡丽萍. 液相外延碲镉汞薄膜表面氧化特性的光电子能谱研究. 物理学报, doi: 10.7498/aps.49.132
    [18] 陈仙辉, 钱逸泰, 陈祖耀, 朱俊华, 季明荣. Bi2Sr2CaCu2-xLixOy体系的光电子能谱研究. 物理学报, doi: 10.7498/aps.41.1487
    [19] 张酣, 何振辉, 赵勇, 孙式方, 钱逸泰, 张其瑞. Y—Ba—Cu—Al—O体系的X射线光电子能谱研究. 物理学报, doi: 10.7498/aps.38.689
    [20] 许掌龙, 刘古, 季振国, 周小霞. V(001)表面上(4×1)-O,(2×2)-S两超结构的角分辨光电子谱. 物理学报, doi: 10.7498/aps.37.311
计量
  • 文章访问数:  450
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-22
  • 修回日期:  2025-09-25
  • 上网日期:  2025-10-10

/

返回文章
返回