搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度学习代理模型的容性耦合氩等离子体流体模拟:非对称推理与定量可信边界

李靖宇 蒋星照 何倩 张逸凡 吴桐 姜森钟 贾文柱 宋远红

引用本文:
Citation:

深度学习代理模型的容性耦合氩等离子体流体模拟:非对称推理与定量可信边界

李靖宇, 蒋星照, 何倩, 张逸凡, 吴桐, 姜森钟, 贾文柱, 宋远红

Capacitively Coupled Argon Plasmas Fluid Simulations with Deep Learning Surrogates: Asymmetric Inference and Quantitative Trust Boundaries

LI Jingyu, JIANG Xingzhao, HE Qian, ZHANG Yifan, WU Tong, JIANG Senzhong, JIA Wenzhu, SONG Yuanhong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 容性耦合等离子体(CCP)的流体模拟对于理解放电物理机制非常重要,但其高昂的计算成本制约了大范围参数化探索。为突破该限制,本研究开发了一种深度学习代理模型,旨在以近瞬时推理速度复现一维CCP流体模型的输出结果。该模型精确预测了容性耦合氩等离子体流体模拟中关键等离子体参数的空间分布,包括电子密度、电子温度及电场分布,并将所需计算时间从数小时压缩至毫秒量级。除加速优势外,代理模型学习过程还揭示了根植于等离子体物理的非对称推理能力。代理模型可从复杂的低压物理域外推至更简单的高压物理域,反之则不可行,表明低压状态具有更完整的物理信息。进一步,本研究建立一个模型推理的置信边界,确保预测结果的物理可靠性。最终,本研究为创建高保真、超快速的流体模拟等离子体替代提供了方案。
    Fluid simulations of capacitively coupled plasmas (CCP) are crucial for understanding their discharge physics, yet the high computational cost poses a major bottleneck. To overcome this limitation, we have developed a deep learning-based surrogate model designed to replicate the output of a onedimensional CCP fluid model with near-instantaneous inference speed. Through a systematic evaluation of three architectures—Feedforward Neural Network (FNN), Attention-enhanced Long Short-Term Memory network (ALSTM), and Convolutional-Transformer hybrid network (CTransformer)—we found that the sequence-structured ALSTM model achieves the optimal balance between speed and accuracy, with an overall prediction error of only 1.73% for electron density, electric field, and electron temperature in argon discharge. This study not only achieves simulation acceleration but also reveals that the model can accu- rately extrapolate from low-pressure conditions dominated by complex non-local effects to high-pressure conditions governed by simple local effects, whereas the reverse extrapolation fails. This phenomenon suggests that training under low-pressure conditions enables the model to capture more comprehensive data features. From the perspective of model weights, both low-pressure and high-pressure models assign key weights to the sheath region, but the low-pressure model exhibits higher weight peaks in the sheath, indicating a stronger ability to capture the key physical process of sheath dynamics. In contrast, the high-pressure model, due to its lower weights in the sheath region, may fail to adequately resolve the complex dynamics of the sheath when predicting new operating conditions, thereby limiting its ability for high-fidelity extrapolation. To ensure the reliability of this data-driven model in practical applications, we established a trust boundary of 5% normalized mean absolute spatial error for model performance through systematic extrapolation experiments. When the model’s extrapolation error falls below this threshold, the spatial distribution curves of predicted parameters such as electron density and electron temperature closely match the true physical distributions. However, once the error exceeds this critical point, systematic deviations such as morphological distortion and amplitude discrepancies begin to appear in the predicted spatial distributions, significantly diverging from the true physical laws. In the future, we will develop neural network models capable of processing high-dimensional spatial data and incorporating multi-dimensional input features such as various discharge gases, ultimately realizing a dedicated AI model for the field of capacitively coupled plasmas.
  • [1]

    Kim H C, Iza F and Yang S S, Radmilović-Radjenović M and Lee J K 2005 J. Phys. D: Appl. Phys. 38 R283

    [2]

    Wang X C and Zhang Y T 2023 J. Appl. Phys. 133143301

    [3]

    Zhang Y T, Gao S H and Zhu Y Y 2023 J. Appl. Phys. 133053303

    [4]

    Sethi S P, Das D P and Behera S K 2023 IEEE Trans. Plasma Sci. 511434

    [5]

    Kim B, Im S and Yoo G 2021 Electronics 1049

    [6]

    Xiao T Q, Wu Z, Christofides P D, Armaou A and Ni D 2021 Ind. Eng. Chem. Res. 61638

    [7]

    Liau L C K, Huang C J, Chen C C, Huang C S, Chen T, Lin S C and Kuo L C 2002 Sol. Energy Mater. Sol. Cells 71169

    [8]

    Pan J, Liu Y, Zhang S, Hu X C, Liu Y D and Shao T 2023 Energy Convers. Manage. 277116620.

    [9]

    Wan C G, Yu Z, Wang F, Liu X J and Li J G 2021 Nucl. Fusion 61066015

    [10]

    Yang Y, Yang S, Li C and Yu Z H 2021 IEEE Access 967232

    [11]

    Borghei M and Ghassemi M 2022 IEEE Trans. Dielectr. Electr. Insul. 29319

    [12]

    Seo J, Kim S, Jalalvand A, Conlin R, Rothstein A, Abbate J, Erickson K, Wai J, Shousha R and Kolemen E 2024 Nature 626746

    [13]

    Dave B, Patel S, Shivani R, Purohit S and Chaudhury B 2022 Contrib. Plasma Phys. 63 e202200051

    [14]

    Marvin M and Seymour P 1969 MIT Press 6318

    [15]

    Riedmiller M 1994 Computer Standards & Interfaces 16265

    [16]

    Krizhevsky A, Sutskever I and Hinton G E 2012 Advances in neural information processing systems 25

    [17]

    Elman J L 1990 Cognitive science 14179

    [18]

    Hpchreiter S and Schmidhuber J 1997 Neural computation 91735

    [19]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł and Polosukhin 2017 Advances in neural information processing systems 30

    [20]

    Liu Z M, Wang Y X, Vaidya S, Ruehle F, Halverson J, Soljačić M, Hou Y T and Tegmark M 20242404.19756v5[cs.LG]

    [21]

    Von R L, Maryer S, Beckh K, Georgiev B, Giesselbach S, Heese R, Kirsch B, Pfrommer J, Pick A, Ramamurthy R, Walczak M, Garcke J, Bauckhage C and Schuecker J. 2021 IEEE Trans. Knowl. Data Eng. 35614

    [22]

    Willard J, Jia X, Xu S M, Steinbach M and Kumar V 2020 arXiv:2003.04919v6[physics.comp-ph]

    [23]

    Basir S 2022 arXiv:2209.09988v3[cs.LG]

    [24]

    Luo X, Yuan S Y, Tang H W, Xu D, Ran Q H, Cen Y H and Ling D F 2024 Hydrol. Processes 38 e151431

    [25]

    Li J, Wu X and Li Z 2025 Appl. Ocean Res. 161104661

    [26]

    Guo Y, Li L, Xiang Z, Gui J, Shi S, Lei Z and Xu X 2025 Atomic Energy Science and Technology 591085

    [27]

    Li W K and Zhang Y T 2025 J. Appl. Phys. 137203304

    [28]

    Noh H, Lee J and Yoon E 2025 J. Comput. Phys. 523113665

    [29]

    Shi H Y, Wang S and Wang P Y 2024 J. Environ. Chem. Eng. 12112998

    [30]

    Marcus G 2018 arXiv:1801.00631v1[cs.AI]

    [31]

    Battaglia P W, Hamrick J B, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J, Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P, Botvinick M, Vinyals O, Li Y, Pascanu R. 2018 arXiv:1806.01261v3[cs.LG]

    [32]

    Xu K, Zhang M, Li J, Du S S, Kawarabayashi K I and Jegelka S 2020 arXiv:2009.11848v5[cs.LG]

    [33]

    Wu Y, Zhu Z, Liu F, Chrysos G and Cevher V 2022 Advances in neural information processing systems 3526980

    [34]

    Hestness J, Narang S, Ardalani N, Diamos G, Jun H, Kianinejad H, Patwary M M A, Yang Y and Zhou Y Q 2017 arXiv:1712.00409v1[cs.LG]

    [35]

    Manzhos S and Ihara M 2023 J. Phys. Chem. A 1277823

    [36]

    Jain S and Wallace B C 2019 arXiv:1902.10186v3[cs.CL]

    [37]

    Donko Z, Derzsi A, Vass M, Horvth B, Wilczek S, Horvath B and Hartmann P 2021 Plasma Sources Sci. Technol 30095017

    [38]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H and Wang Y N 2019 J. Phys. D: Appl. Phys 52015206

  • [1] 张帆, 张恒, 李卓越, 文俊, 胡海豹. 基于深度学习方法的圆柱绕流实验缺失数据重构. 物理学报, doi: 10.7498/aps.74.20241689
    [2] 陈鹏博, 王少义, 张文博, 温家星, 吴玉迟, 赵宗清, 王度. 基于深度学习的长波红外介电光栅加速器结构设计. 物理学报, doi: 10.7498/aps.74.20250130
    [3] 李京泽, 赵明亮, 张钰如, 高飞, 王友年. 双频容性耦合Ar/CF4等离子体源的多物理场三维仿真研究. 物理学报, doi: 10.7498/aps.74.20251121
    [4] 史寒旭, 李欣阳, 张钰如, 王友年. 超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟. 物理学报, doi: 10.7498/aps.74.20250341
    [5] 张赞, 黄北举, 陈弘达. 基于可重构硅光滤波器的计算重建片上光谱仪. 物理学报, doi: 10.7498/aps.73.20240224
    [6] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, doi: 10.7498/aps.73.20240171
    [7] 杨振宇, 张元哲, 范威, 杨广杰, 韩先伟. 磁等离子体发动机中磁喷管分离过程的流体模拟. 物理学报, doi: 10.7498/aps.73.20231862
    [8] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, doi: 10.7498/aps.72.20230680
    [9] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, doi: 10.7498/aps.72.20231069
    [10] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, doi: 10.7498/aps.72.20221374
    [11] 黄华, 李江涛, 王倩男, 孟令彪, 齐伟, 洪伟, 张智猛, 张博, 贺书凯, 崔波, 伍艺通, 张航, 吉亮亮, 周维民, 胡建波. 星光III装置上材料动态压缩过程的激光质子照相实验研究. 物理学报, doi: 10.7498/aps.71.20220919
    [12] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, doi: 10.7498/aps.71.20211373
    [13] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, doi: 10.7498/aps.70.20210561
    [14] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, doi: 10.7498/aps.70.20202075
    [15] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, doi: 10.7498/aps.70.20210403
    [16] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, doi: 10.7498/aps.70.20210473
    [17] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, doi: 10.7498/aps.69.20200805
    [18] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, doi: 10.7498/aps.69.20201019
    [19] 高书涵, 王绪成, 张远涛. 脉冲调制条件下介质阻挡特高频放电特性的数值模拟. 物理学报, doi: 10.7498/aps.69.20191853
    [20] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, doi: 10.7498/aps.67.20181400
计量
  • 文章访问数:  21
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-14

/

返回文章
返回