-
We theoretically and experimentally investigate a method of exciting multipole plasmons, including terahertz dark spoof localized surface plasmon (Spoof-LSP) modes, by using normally incident terahertz vortex beam. The vortex beam with angular intensity profile and phase singularities, has well-defined angular momentum which can be decomposed into the polarization-state-related spin angular momentum (SAM) for characterizing the spin feature of photon, and the helical-wavefront-related orbital angular momentum (OAM) that is characterized by an integer
$ (l) $ , called the topological charge. By illuminating terahertz vortex beam on the metallic disk with periodic subwavelength grooves normally, we find that the terahertz dark multipole plasmons can be excited by the terahertz vortex beam carrying different OAM and SAM. We analyze the correspondence between the spin and orbital angular momentum of vortex beam and the excited dark multipolar plasmon modes. In the experiment, a terahertz stepped spiral phase plate (SPP) with high transmission and low dispersion based on the Tsurupica olefin polymer is developed and the stepped SPP can generate a terahertz vortex beam having a topological charge of 1. Then, we further study the excitation of dark multipolar Spoof-LSPs by utilizing the stepped SPP in combination with the near-field scanning terahertz microscopy. The collimated terahertz wave, which is radiated from a 100 fs (λ = 780 nm) laser pulse pumped photoconductive antenna emitter, is converted into terahertz circular polarized light (CPL) which can carry SAM by the combination of the quarter wave plate and the polarizer, and then terahertz CPL impinges on the stepped SPP, producing the terahertz vortex beam which can carry OAM. The spatial two-dimensional electric field distribution is collected in steps of 0.02 mm along the x-direction and y-direction by a commercial terahertz near-field probe which is located close (≈ 10 μm) to the one side of polyimide film by three-dimensional electric translation stage and a microscope (FORTUNE TECHPLOGY FT-FH1080). The experimental results are in good agreement with simulations. We believe that our method will open the way for detailed research on the terahertz physics, plasma and imaging fields.-
Keywords:
- terahertz vortex beam /
- spoof localized surface plasmon mode /
- spin and orbital angular momentum
[1] Maier S A 2007 Plasmoincs: Fundamentals and Applications (Vol. 52) (Berlin: Springer) p49
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[3] Evlyukhin A B, Reinhardt C, Chichkov B N 2011 Phys. Rev. B 84 235429Google Scholar
[4] Oldenburg S J, Jackson J B, Westcott S L, Halas N J 1999 Appl. Phys. Lett. 75 2897Google Scholar
[5] Hao F, Larsson E M, Ali T A., Sutherland D S, Nordlander P 2008 Chem. Phys. Lett. 458 262Google Scholar
[6] Hao F, Nordlander P, Sonnefraud Y, Dorpe P V, Maier S A 2009 ACS Nano 3 643Google Scholar
[7] Habteyes T G, Dhuey S, Cabrini S, Schuck P J, Leone S R 2011 Nano Lett. 11 1819Google Scholar
[8] Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar
[9] Chen L, Ge Y F, Zang X F, Xie J Y, Ding L, Balakin A V, Shkurinov A P, Zhu Y M 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar
[10] Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar
[11] Shen X P, Cui T J 2014 Laser Photonics Rev. 8 137Google Scholar
[12] Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar
[13] Chen L, Xu N N, Singh L, Cui T J, Singh R J, Zhu S L, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar
[14] Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inf. Technol. Electron. 20 591Google Scholar
[15] Zhou J, Chen L, Sun Q Y, Liao D G, Ding L, Balakin A V, Shkurinov A P, Xie J Y, Zang X F, Cheng Q Q, Zhu Y M 2020 Appl. Phys. Express 13 012014Google Scholar
[16] Allen L, Beijersbegen M W, Spreeum R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[17] 胡志健 2010 博士学位论文 (天津: 南开大学)
Hu Z J 2010 Ph. D. Dissertation. (Tianjing: Nankai University) (in Chinese)
[18] Sakai K, Nomura K, Yamamoto T, Sasaki K 2015 Sci. Rep. 5 8431Google Scholar
[19] Morimoto S, Arikawa T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) Copenhagen, The Kingdom of Denmark, 2016 pp1, 2
[20] Arikawa T, Morimoto S, Hiraoka T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, 2018 pp1, 2
[21] Zang X F, Zhu Y M, Mao C X, Xu W W, Ding H Z, Xie J Y, Cheng Q Q, Chen L, Peng Y, Hu Q, Gu M, Zhuang S L 2019 Adv. Opt. Mater. 7 1801328Google Scholar
[22] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[23] Milione G, Evans S, Nolan D A, Alfano R R 2012 Phys. Rev. Lett. 108 190401Google Scholar
[24] Miyamoto K, Kang B J, Kim W T, Sasaki Y, Niinomi H, Suizu K, Rotermund F, Omatsu T 2016 Sci. Rep. 6 38880Google Scholar
[25] Miyamoto K, Suizu K, Akiba T, Omatsu T 2014 Appl. Phys. Lett. 104 261104Google Scholar
-
图 5 透射式阶梯型SPP (a)结构示意图, 其中
$ \lambda = $ 500 μm, 阶梯总数量$ N=18 $ , 总厚度$ h=4\;{\rm{mm}} $ , 基底厚度为$ {h}_{0}\approx $ 961.54 μm, 旋转方位角$\phi =20^ \circ$ ; (b) 1阶SPP的实物图Figure 5. Transmissive stepped SPP: (a) Schematic of the structure, where the wavelength
$ \lambda = $ 500 μm, the total number of steps$ N=18 $ , the total thickness$ h=4\;{\rm{mm}} $ , the base thickness$ {h}_{0}\approx $ 961.54 μm, the rotation azimuth$\phi =20^ \circ$ ; (b) the physical map of SPP.表 1 Spoof-LSPs模式和角动量的关系
Table 1. Relationship between Spoof-LSPs mode and angular momentum.
l s J Spoof-LSPs模式 2 1 3 六极子 1 1 2 四极子 –1 0 — 0 1 1 偶极子 -
[1] Maier S A 2007 Plasmoincs: Fundamentals and Applications (Vol. 52) (Berlin: Springer) p49
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[3] Evlyukhin A B, Reinhardt C, Chichkov B N 2011 Phys. Rev. B 84 235429Google Scholar
[4] Oldenburg S J, Jackson J B, Westcott S L, Halas N J 1999 Appl. Phys. Lett. 75 2897Google Scholar
[5] Hao F, Larsson E M, Ali T A., Sutherland D S, Nordlander P 2008 Chem. Phys. Lett. 458 262Google Scholar
[6] Hao F, Nordlander P, Sonnefraud Y, Dorpe P V, Maier S A 2009 ACS Nano 3 643Google Scholar
[7] Habteyes T G, Dhuey S, Cabrini S, Schuck P J, Leone S R 2011 Nano Lett. 11 1819Google Scholar
[8] Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar
[9] Chen L, Ge Y F, Zang X F, Xie J Y, Ding L, Balakin A V, Shkurinov A P, Zhu Y M 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar
[10] Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar
[11] Shen X P, Cui T J 2014 Laser Photonics Rev. 8 137Google Scholar
[12] Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar
[13] Chen L, Xu N N, Singh L, Cui T J, Singh R J, Zhu S L, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar
[14] Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inf. Technol. Electron. 20 591Google Scholar
[15] Zhou J, Chen L, Sun Q Y, Liao D G, Ding L, Balakin A V, Shkurinov A P, Xie J Y, Zang X F, Cheng Q Q, Zhu Y M 2020 Appl. Phys. Express 13 012014Google Scholar
[16] Allen L, Beijersbegen M W, Spreeum R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[17] 胡志健 2010 博士学位论文 (天津: 南开大学)
Hu Z J 2010 Ph. D. Dissertation. (Tianjing: Nankai University) (in Chinese)
[18] Sakai K, Nomura K, Yamamoto T, Sasaki K 2015 Sci. Rep. 5 8431Google Scholar
[19] Morimoto S, Arikawa T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) Copenhagen, The Kingdom of Denmark, 2016 pp1, 2
[20] Arikawa T, Morimoto S, Hiraoka T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, 2018 pp1, 2
[21] Zang X F, Zhu Y M, Mao C X, Xu W W, Ding H Z, Xie J Y, Cheng Q Q, Chen L, Peng Y, Hu Q, Gu M, Zhuang S L 2019 Adv. Opt. Mater. 7 1801328Google Scholar
[22] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[23] Milione G, Evans S, Nolan D A, Alfano R R 2012 Phys. Rev. Lett. 108 190401Google Scholar
[24] Miyamoto K, Kang B J, Kim W T, Sasaki Y, Niinomi H, Suizu K, Rotermund F, Omatsu T 2016 Sci. Rep. 6 38880Google Scholar
[25] Miyamoto K, Suizu K, Akiba T, Omatsu T 2014 Appl. Phys. Lett. 104 261104Google Scholar
Catalog
Metrics
- Abstract views: 7873
- PDF Downloads: 142
- Cited By: 0