Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-mode orbital angular momentum generated based on dual-polarization coding metasurface

Han Jun-Jie Qian Si-Xian Zhu Chuan-Ming Huang Zhi-Xiang Ren Xin-Gang Cheng Guang-Shang

Citation:

Dual-mode orbital angular momentum generated based on dual-polarization coding metasurface

Han Jun-Jie, Qian Si-Xian, Zhu Chuan-Ming, Huang Zhi-Xiang, Ren Xin-Gang, Cheng Guang-Shang
PDF
HTML
Get Citation
  • In this paper, a dual-polarization 4-bit coding metasurface is proposed to achieve the flexible manipulation of different polarization electromagnetic wave reflection angles and the generation of dual-mode vortex beams by independent manipulation of orthogonal linearly polarized waves. The proposed metasurface is composed of an H-type metal patch, dielectric substrate, and metal grounding layer from top to bottom. To prove the proposed concept, we design and fabricate four coding metasurfaces based on the superposition theorem and holographic theory. One of the coding metasurfaces is designed to verify the ability to manipulate the beam angle, and each of the other three coding metasurfaces is designed to carry a vortex beam with different topological charges under orthogonal linearly polarized waves with a central frequency of 24 GHz. The experimental results show that the theoretical design is highly consistent with the simulation results. Therefore, it is verified that our proposed 4-bit dual-polarization coding metasurface has a strong and flexible ability to manipulate the beam reflection angle and generate a high-performance dual-mode vortex beam antenna. Because of the wide application prospect of vortex beams in the communication field, we have reason to believe that the proposed ultra-thin dual-mode vortex generator will have potential applications in wireless communication systems in the fields of images and microwaves.
      Corresponding author: Huang Zhi-Xiang, zxhuang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901002, 61971001, U20A20164, 61801299), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QF258), and the University Synergy Innovation Program of Anhui Province, China (Grant Nos. GXXT-2020-050, GXXT-2020-051, GXXT-2021-027, GXXT-2020-037).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Thidé B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [3]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [4]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [5]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [6]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [7]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [8]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [9]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [10]

    Tamburini F, Thidé B, Mari E, Sponselli A, Bianchini A, Romanato F 2012 New J. Phys. 14 118002Google Scholar

    [11]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [12]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [14]

    Meng X S, Wu J J, Wu Z S, Qu T, Yang L 2018 Opt. Express 26 23185Google Scholar

    [15]

    Meng X S 2019 Appl. Phys. Lett. 114 093504Google Scholar

    [16]

    Yu S X, Li L, Shi G M, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [17]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science. 339 1232009Google Scholar

    [18]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [19]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [20]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antenn. Propag. 65 396Google Scholar

    [21]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

  • 图 1  (a) 反射型超表面等效电路模型; (b) 亚波长结构及等效电路模型

    Figure 1.  Schematic of the equivalent circuit for (a) reflective metasurface and (b) subwavelength structure.

    图 2  (a)单元结构的顶部视图; (b)单元结构的侧视图; (c)单元“1/0”在不同极化下的反射相位和幅度

    Figure 2.  (a) Top view of unit structure; (b) side view of unit structure; (c) reflection phase and amplitude of unit “1/0” under different polarizations.

    图 3  由16个基本单元结构组成的2-bit双极化编码超表面

    Figure 3.  The structure consists of 16 basic units composed of 2-bit dual-polarization coding metasurface.

    图 4  由256个基本单元结构组成的4-bit双极化编码超表面

    Figure 4.  The structure consists of 256 basic units composed of 4-bit dual-polarization coding metasurface.

    图 5  由16个各向同性单元结构尺寸组成的4-bit离散反射相位曲线

    Figure 5.  A 4-bit discrete reflection phase curve composed of 16 isotropic unit structures of various sizes.

    图 6  (a), (b) 携带拓扑荷L为2, 利用1-bit和4-bit构造的离散编码相位分布; (c), (d) 拓扑荷L为2的二维涡旋散射曲线图, 及其近场对应的幅值和相位; (e) 不同bit构造的2阶OAM谱分布对比图

    Figure 6.  (a), (b) Discrete encoded phase distributions with topological charge L=2, constructed using 1-bit and 4-bit encoding schemes, respectively; (c), (d) two-dimensional far-field scattering patterns of the L=2 vortex beams; (e) comparison of 2nd-order orbital angular momentum spectra constructed using different bit encoding.

    图 7  (a), (c), (e) x极化入射时携带拓扑荷为1, 3, 5的离散编码相位分布; (b), (d), (f) y极化入射时携带拓扑荷为2, 4, 6的离散编码相位分布; (g), (i), (k) x极化入射时携带拓扑荷为1, 3, 5的涡旋电场强度辐射图; (h), (j), (l) y极化入射时携带拓扑荷为2, 4, 6的涡旋电场强度辐射图; (m), (o), (q) x极化入射时携带拓扑荷为1, 3, 5的涡旋电场相位分布图; (n), (p), (r) y极化入射时携带拓扑荷为2, 4, 6的涡旋电场相位分布图

    Figure 7.  (a), (c), (e) Phase distributions of discrete coding with topological charges of 1, 3 and 5 under x-polarization incidence; (b), (d), (f) phase distributions of discrete coding with topological charges of 2, 4 and 6 under y-polarization incidence; (g), (i), (k) radiation patterns of vortex electric field intensity with topological charges of 1, 3 and 5 under x-polarization incidence; (h), (j), (l) radiation patterns of vortex electric field intensity with topological charges of 2, 4 and 6 under y-polarization incidence; (m), (o), (q) phase distribution patterns of the vortex electric field with topological charges 1, 3 and 5 under x-polarization incidence; (n), (p), (r) phase distribution patterns of the vortex electric field with topological charges 2, 4 and 6 under y-polarization incidence.

    图 8  (a) 双模式涡旋器件的实物拍摄图, 且分别携带拓扑荷1阶和2阶; (b) 实际的测试环境; (c), (d) y极化入射, 在24 GHz时携带拓扑荷为2的仿真和实测涡旋电场强度辐射图; (e)(f) x极化入射, 在24 GHz时携带拓扑荷为1的仿真和实测涡旋电场相位分布图; (g), (h) y极化入射, 在24 GHz时携带拓扑荷为2的仿真和实测涡旋电场相位分布图; (i), (j) y极化入射, 在23 GHz, 25 GHz时携带拓扑荷为2的实测涡旋电场强度辐射图; (k), (l)样品M1在xy极化下实际测试的OAM谱纯度

    Figure 8.  (a) Photography of fabricated sample; (b) the real measurement environment; (c), (d) simulated and measured radiation patterns of vortex electric field intensity at 24 GHz with topological charges of 2 under y-polarization incidence; (e), (f) simulated and measured phase distribution patterns of vortex electric field at 24 GHz with topological charges of 1 under x-polarization incidence; (g), (h) simulated and measured phase distribution patterns of vortex electric field at 24 GHz with topological charges of 2 under y-polarization incidence; (i), (j) measured radiation patterns of vortex electric field intensity at 23 and 25 GHz with topological charges of 2 under y-polarization incidence; (k), (l) actual OAM purity measurements of sample M1 under x and y polarizations, respectively.

    表 1  2-bit双极化编码超表面单元结构的几何参数, 符号“/”后的数字代表不同的数字态

    Table 1.  Geometric parameters of 2-bit dual-polarization coding metasurface unit structure, where the number following the symbol “/” represents different digital states.

    参数a/00w1/10w2/10h1/10h2/10a/11w1/20w2/20h1/20h2/20a/22w1/30w2/30h1/30h2/30
    值/mm514.953.612.53.3914.953.392.53.2314.953.112.5
    参数 a/33w1/21w2/21h1/21h2/21 w1/31w2/31h1/31h2/31w1/32w2/32h1/32h2/32
    值/mm3.051.23.293.62.81.23.433.32.81.353.13.452.6
    DownLoad: CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Thidé B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [3]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [4]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [5]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [6]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [7]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [8]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [9]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [10]

    Tamburini F, Thidé B, Mari E, Sponselli A, Bianchini A, Romanato F 2012 New J. Phys. 14 118002Google Scholar

    [11]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [12]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nat. Commun. 3 1278Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [14]

    Meng X S, Wu J J, Wu Z S, Qu T, Yang L 2018 Opt. Express 26 23185Google Scholar

    [15]

    Meng X S 2019 Appl. Phys. Lett. 114 093504Google Scholar

    [16]

    Yu S X, Li L, Shi G M, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [17]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science. 339 1232009Google Scholar

    [18]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [19]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [20]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antenn. Propag. 65 396Google Scholar

    [21]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

  • [1] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] Wei Tao, Zhang Yu-Jie, Ge Hong-Yi, Jiang Yu-Ying, Wu Xu-Yang, Sun Zhen-Yu, Ji Xiao-Di, Bu Yu-Wei, Jia Ke-Ke. Composite phase modulated beam steering controllable reflective metasurface. Acta Physica Sinica, 2024, 73(22): 1-10. doi: 10.7498/aps.73.20240764
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [5] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [6] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [7] Chen Xin-Miao, Li Hai-Ying, Wu Tao, Meng Xiang-Shuai, Li Feng-Xia. Near-field electromagnetic scattering of Bessel vortex beam by metal target. Acta Physica Sinica, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192
    [8] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [9] Li Hai-Peng, Wu Xiao, Ding Hai-Yang, Xin Ke-Wei, Wang Guang-Ming. Wideband circularly-polarized bifunction devices employing composite metasurfaces. Acta Physica Sinica, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [10] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [11] Zhang Na, Zhao Jian-Min, Chen Ke, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Independent dual-beam control based on programmable coding metasurface. Acta Physica Sinica, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [12] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [13] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao. Dynamic beam-steering in wide angle range based on tunable graphene metasurface. Acta Physica Sinica, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [16] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Shen Yang, Yu Ji-Bao, Fan Ya, Zhang An-Xue. A circular polarization antenna designed based on the polarization conversion metasurface. Acta Physica Sinica, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [20] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
Metrics
  • Abstract views:  2602
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2023
  • Accepted Date:  04 May 2023
  • Available Online:  10 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回