Processing math: 25%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and control of structural color in asymmetric coaxial cavity

Qian Qi-Sheng Liu Hui-Yan Zha Yong-Peng Ni Hai-Bin

Qian Qi-Sheng, Liu Hui-Yan, Zha Yong-Peng, Ni Hai-Bin. Generation and control of structural color in asymmetric coaxial cavity. Acta Phys. Sin., 2022, 71(8): 084103. doi: 10.7498/aps.71.20211337
Citation: Qian Qi-Sheng, Liu Hui-Yan, Zha Yong-Peng, Ni Hai-Bin. Generation and control of structural color in asymmetric coaxial cavity. Acta Phys. Sin., 2022, 71(8): 084103. doi: 10.7498/aps.71.20211337

Generation and control of structural color in asymmetric coaxial cavity

Qian Qi-Sheng, Liu Hui-Yan, Zha Yong-Peng, Ni Hai-Bin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Metal nanostructures have great potential for generating and regulating structural color. In this paper, an array structure based on silver nano asymmetric coaxial cavity is designed to study the influence of ring cavity on the generation and regulation of structural color. The ordered array of asymmetric coaxial cavity is simulated by the finite difference time domain method, and the influence of structural parameters on structural color is obtained. The results show that by adjusting the depth, opening size and thickness of coaxial cavity, the rich structural colors can be produced. The experimental results and the simulation results are basically consistent with each other. Compared with the coaxial cavity with symmetrical structure, the asymmetric metal nanostructure proposed in this work has good adjustability in color display, and has potential applications in color imaging, high-resolution imaging, anti-counterfeiting, and so on.
      PACS:
      41.20.-q(Applied classical electromagnetism)
      61.46.-w(Structure of nanoscale materials)
      42.25.Gy(Edge and boundary effects; reflection and refraction)
      Corresponding author: Ni Hai-Bin, nihaibin@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605082, 61875089), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160969), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD), the China Postdoctoral Science Foundation (Grant No. 2017M611654), and the Jiangsu Provincial Postdoctoral Sustentation Fund, China (Grant No. 1701074B ).

    人类社会应用的色彩来源于矿物质、植物或动物色素以及人工合成, 现代生活更多地采用合成染料, 然而染料分子在高温或紫外线照射下不易保存, 还存在环境污染问题. 结构色在大自然中广泛存在, 例如鸟类羽毛[1,2]、昆虫翅膀[3,4]等, 结构色相比传统染料色彩具有寿命长[5]、无污染、极限分辨率高等优点. 人类社会对结构色的研究利用仍处于初步阶段, 近年来有大量相关的报道, 其中基于表面等离激元(surface plasmon polaritons, SPPs)的一类结构色因可制备突破衍射极限的光子调控结构引起了广泛的关注和研究, 例如MIM(metal/insulator/metal)多层结构[6]、表面有序孔洞结构[7,8]等. 有报道称同轴金纳米管阵列结构[9]可以使得共振波长的位置在较大光谱范围内可调控, 实现CMY (cyan-magenta-yellow)和RGB (red-green-blue)色彩, 反射颜色在大角度范围内对角度不敏感, 并且可以实现突破衍射极限的像素尺寸. 但现阶段的研究仅局限于对称结构, 对非对称结构方面的研究有所欠缺, 因此本文着重研究非对称条件下共轴纳米腔的光学和色彩特性.

    本文创新地研究了一种非对称的纳米共轴腔结构的色彩显示特性. 通过时域有限差分法(finite difference time domain, FDTD)研究光谱和色彩对结构非对称性的依赖关系, 分析该结构的反射谱和共振波长对应的截面电场分布的仿真结果, 阐述了非对称结构产生结构色激发的光学模式. 实验和仿真计算表明, 非对称共轴腔可显示大部分明亮的颜色, 可潜力应用于防伪、高分辨成像、超清彩色显示等.

    非对称共轴腔有序阵列周期结构如图1(a)所示, 剖面如图1(b)所示. 由PS衬底层和银层上周期性排列的非对称共轴腔组成. 采用基于FDTD算法的商业软件对结构的光学特性进行研究. 将仿真区域的x方向与y方向设置为周期边界条件, z方向设置为完美匹配层(PML). 平面光光源沿z轴负方向入射, 网格大小Δx, Δy, Δz均设为2 nm.

    图 1 模型结构示意图 (a) 三维图; (b) 剖面图\r\nFig. 1. Model structure diagram: (a) Three dimensional diagram; (b) section diagram.
    图 1  模型结构示意图 (a) 三维图; (b) 剖面图
    Fig. 1.  Model structure diagram: (a) Three dimensional diagram; (b) section diagram.

    取一组H = 150 nm, R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm的结构参数. 利用FDTD算法仿真研究非对称共轴腔的光学特性, 得到图2(b)所示的模型的反射谱、透射谱及吸收谱, 反射光谱在可见光波段形成位于λ1 = 490 nm, λ2 = 610 nm等多个反射谷. 为说明各个谐振的内在物理机理, 得到各个反射谱波谷对应波长的截面电场分布图, 结果如图2(c)图2(d)所示, 共振发生在非对称结构的空气腔内. 根据波导理论和对计算所得截面电场分布图的分析, 纳米管腔上下界面可以形成满足横电波TE (transverse electric)波导模式边界条件的法布里-珀罗F-P (Fabry-Perot)腔共振模式, 另外在腔内外表面圆周方向可以存在满足谐振条件的模式, 同时满足上述两个条件的模式, 即圆柱形表面等离激元CSPs [10], 该模式计算公式如下[11-13]:

    图 2 结构与仿真结果 (a) 具有指定几何参数的同轴纳米腔的结构参数示意图; (b) 当单个非对称共轴腔的结构参数为H = 150 nm,  R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm的反射、透射、吸收谱光谱图; (c) λ1 =  490 nm和(d) λ2 = 610 nm共振波长处竖直截面的电场分布图\r\nFig. 2. Structure and simulation: (a) Single interface diagram of coaxial nano-cavity with specified geometric parameters; (b) reflection, transmission and absorption spectra of a single asymmetric coaxial cavity with H = 150 nm,  R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm; cross section electric field distributions at (c) λ1 = 490 and (d) λ2 = 610 nm resonance wavelengths.
    图 2  结构与仿真结果 (a) 具有指定几何参数的同轴纳米腔的结构参数示意图; (b) 当单个非对称共轴腔的结构参数为H = 150 nm, R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm的反射、透射、吸收谱光谱图; (c) λ1 = 490 nm和(d) λ2 = 610 nm共振波长处竖直截面的电场分布图
    Fig. 2.  Structure and simulation: (a) Single interface diagram of coaxial nano-cavity with specified geometric parameters; (b) reflection, transmission and absorption spectra of a single asymmetric coaxial cavity with H = 150 nm, R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm; cross section electric field distributions at (c) λ1 = 490 and (d) λ2 = 610 nm resonance wavelengths.
    |2LKSPP(ω)+Δϕ1+Δϕ2|=2πm, (1)
    2rKSPP=2πn, (2)
    2(R-r)K_{\rm SPP}=2πp, (3)

    式中, L 为纳米管腔的深度; \Delta {\phi _1} \Delta {\phi _2} 分别非对称共轴腔有序阵列结构上下界面光波的相位变化, 且SPPs在界面处的相位的变化在0—2π之间, 与模式在波导中的等效折射率相关; {K_{{\text{SPP}}}}\left( \omega \right) 为对应共振波长的频率 \omega 的波矢量; m, n, p表示同轴腔中的模式阶数. 由 (1) 式可知, 波长为490和610 nm等特定频率的光在垂直和水平方向上满足F-P模式的相位匹配条件, 同时也符合波导在环形腔的边界条件. 在共振条件下, 由于金属中的损耗, 特定波长的光被强烈吸收, 结构反射光谱中出现明显的反射下降(反射谷), 使得结构呈现出相应的结构色. 通过改变结构的各个参数, 实现整个可见光范围内对反射颜色的控制, 对于设计参数, 着色主要由g-CSP模式定义, 以确保显示的色彩在较大入射角度范围内不变.

    实验制备的非对称共轴腔阵列结构如图3(a)所示, 共轴腔截面SEM图如图3(b)所示(非对称结构开口的方向不影响其颜色调控能力). 以自组装的有序聚苯乙烯(PS)微球/SiO2复合结构阵列为衬底, 通过反应离子刻蚀法选择性刻蚀PS微球的形貌, 结合磁控溅射镀膜形成一系列纳米环形腔阵列, 并采用离子束刻蚀的方法形成非对称的环形腔结构. 通过改变刻蚀时间控制共轴腔的深度H, 以此实现不同颜色的显示. 在光学显微镜下观察到结构显示了红、紫、蓝、绿等多种颜色, 如图3(c)所示. 图3(d)(f)给出了图3(c)中紫色区域1、红色区域2和绿色区域3的实验和仿真光谱图像对比(图中标注的3种颜色都是仿真CIE产生的颜色). 受传输型SPP影响, 实验和仿真结果中波谷位置有一定的偏差, 但产生的颜色整体符合度较高. 本文主要研究与g-CSP模式相关的λ1 = 490 nm和λ2 = 610 nm两个反射谷的变化情况, 通过仿真研究不同结构参数模型, 分析其光学性质不同的原因, 结构参数包括共轴腔深度H、共轴腔上外半径R和共轴腔厚度d.

    图 3 实验图 (a)共轴腔结构SEM俯视图; (b)共轴腔结构截面SEM图; (c)结构色显微镜图; (d)—(f) 实验与仿真反射光谱对照图\r\nFig. 3. SEM image of (a) coaxial cavity arrays and (b) cross section of coaxial cavities; (c) optical microscope image of coaxial cavi-ty arrays with different structure parameters; (d)–(f) comparison between experiments and simulation results.
    图 3  实验图 (a)共轴腔结构SEM俯视图; (b)共轴腔结构截面SEM图; (c)结构色显微镜图; (d)—(f) 实验与仿真反射光谱对照图
    Fig. 3.  SEM image of (a) coaxial cavity arrays and (b) cross section of coaxial cavities; (c) optical microscope image of coaxial cavi-ty arrays with different structure parameters; (d)–(f) comparison between experiments and simulation results.
    3.2.1   非对称共轴腔深度H对反射率及结构色调控

    改变腔深度H, 能够得到变化的颜色(图4(a)), 对应的反射光谱图如图4(b)所示. H变化等效竖直方向上纳米腔深度的改变, 入射光在腔高度方向发生F-P共振. 从图4(c)可以看出, 随着H的增加Kspp减少, 对应的λ2反射谷发生红移. 通过软件仿真反射光谱并计算其颜色, 可以看到黄、棕、红、紫、绿等多种颜色, 图4(d)给出与H变化相对应的颜色变化路径图(黑色实心圆点表示仿真起始点), 结果表明结构变量H对于结构色有明显的调控能力, 能够覆盖主要色域.

    图 4 结构色及光谱图 (a) R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm时, 共轴腔深度H从40 nm增加到200 nm时结构色的变化; (b), (c)不同共轴腔深度H时的反射光谱; (d)与深度H变化对应的颜色变化路径图\r\nFig. 4. Structural color and reflectance spectrum comparison diagram: (a) When R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm, the structural color changes when the coaxial cavity depth H increases from 40 nm to 200 nm; (b) , (c) reflection spectra at different coaxial cavity depths H; (d) trace of displayed colors as H varies
    图 4  结构色及光谱图 (a) R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm时, 共轴腔深度H从40 nm增加到200 nm时结构色的变化; (b), (c)不同共轴腔深度H时的反射光谱; (d)与深度H变化对应的颜色变化路径图
    Fig. 4.  Structural color and reflectance spectrum comparison diagram: (a) When R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm, the structural color changes when the coaxial cavity depth H increases from 40 nm to 200 nm; (b) , (c) reflection spectra at different coaxial cavity depths H; (d) trace of displayed colors as H varies
    3.2.2   非对称共轴腔上外半径 R对反射率及结构色的调控

    改变上外半径R, 得到图5(a) 所示绿色、淡黄色、红色等多种颜色, 及其对应的反射光谱图(图5(b)). 保持r不变, 随着R的改变, 共轴腔的开口逐渐增大, 使得管腔两个圆周曲面各自形成的SPPs发生不同程度的耦合, 导致满足TE波导模式的边界条件发生变化, 从而改变共振波长, λ1λ2的反射谷随R增加持续红移(图5(c)). 调节上外半径R引起结构色沿图5(d)所示路径移动(黑色实心圆点表示仿真起始点), 表明非对称结构一侧开口半径变化对显示的结构色有较大调节能力.

    图 5 结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔上外半径R在70—100 nm范围内的结构色显示图; (b) 不同共轴腔上外半径的反射谱图; (c) 共轴腔上外半径R的对比反射光谱图; (d) 上外半径R对应的颜色路径图\r\nFig. 5. Structural color and spectrum contrast diagram: (a) Structural color display diagram of coaxial cavity with outer radius R from 70 to 100 nm; (b) reflection spectrums of different coaxial cavity depths; (c) contrast reflection spectra of outer radius R in coaxial cavity; (d) color path corresponding to upper outer radius R.
    图 5  结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔上外半径R在70—100 nm范围内的结构色显示图; (b) 不同共轴腔上外半径的反射谱图; (c) 共轴腔上外半径R的对比反射光谱图; (d) 上外半径R对应的颜色路径图
    Fig. 5.  Structural color and spectrum contrast diagram: (a) Structural color display diagram of coaxial cavity with outer radius R from 70 to 100 nm; (b) reflection spectrums of different coaxial cavity depths; (c) contrast reflection spectra of outer radius R in coaxial cavity; (d) color path corresponding to upper outer radius R.
    3.2.3   非对称共轴腔厚度d对反射率及结构色的调控

    改变厚度d, 得到如图6(b)所示的反射光谱图. 保持r不变, 改变d的大小使得相邻结构管之间的距离发生了均匀变化, 随着管腔之间的距离越来越大, 管腔之间的耦合程度也就越低, 从而导致满足TE波导模式的边界条件发生变化, 进而改变共振波长, 从图6(c)可以看出, λ1λ2的反射谷不断蓝移. 如图6(d)对应的颜色路径变化图(黑色圆心原点表示仿真起始点), 显示出淡紫色、绿色、粉红色等多种颜色.

    图 6 结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔厚度d在10—45 nm范围内的结构色显示图; (b) 不同共轴腔厚度的反射谱图; (c) 共轴腔厚度d的对比反射光谱图; (d) 厚度d对应的颜色路径图\r\nFig. 6. Structural color and spectrum comparison diagram: (a) When H = 150 nm, R= 55 nm, r = 35 nm, P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10–45 nm; (b) reflection spectrums of different coaxial cavity depths; (d) color path corresponding to thickness d.
    图 6  结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔厚度d在10—45 nm范围内的结构色显示图; (b) 不同共轴腔厚度的反射谱图; (c) 共轴腔厚度d的对比反射光谱图; (d) 厚度d对应的颜色路径图
    Fig. 6.  Structural color and spectrum comparison diagram: (a) When H = 150 nm, R= 55 nm, r = 35 nm, P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10–45 nm; (b) reflection spectrums of different coaxial cavity depths; (d) color path corresponding to thickness d.

    尽管相比对称结构, 非对称结构在制备方法上更困难, 但通过FDTD仿真计算发现: i)非对称共轴腔结构的结构参数可调性更高(可调节上下开口R, r); ii) 在同样金属膜厚度条件下, 非对称腔的倾斜腔长度比对称竖直腔长度大, 因此非对称腔可以在较薄的膜厚范围内实现更多的色彩显示; iii) 非对称共轴腔对颜色的调控能力优于对称共轴腔, 能覆盖更大面积的色域. 以腔厚度为例, 图7(a)所示是对称结构的截面图, 通过改变共轴腔的厚度D, 得到如图7(b)所示的反射光谱图. 随着管腔之间的距离D越来越大, 管腔之间的耦合程度也就越低, 从而导致满足TE波导模式的边界条件发生变化, 进而改变共振波长, 如图7(e)颜色路径变化图(黑色实心原点表示仿真起始点), 显示出淡蓝色、粉红色等颜色. 对比图6(d)可以看出, 与非对称结构相比, 对称共轴腔产生的结构色覆盖区域较小.

    图 7 结构色及光谱对比图 (a)对称结构截面图; (b) H = 200 nm,  L = 60 nm, P = 250 nm时, 共轴腔厚度D从10—35 nm的结构色显示图; (c) 不同共轴腔厚度的反射谱图; (d) 共轴腔厚度D的对比反射光谱图; (e) 厚度D对应的颜色路径图\r\nFig. 7. Structural color and spectrum comparison diagram: (a) When H = 200 nm, L = 60 nm,  P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10 ~ 35 nm; (b) structural color display diagram of coaxial cavity thickness D from 10 to 35 nm; (c) reflection spectrums of different coaxial cavity depths; (d) contrast reflection spectrogram of coaxial cavity thickness D; (e) color path corresponding to thickness D
    图 7  结构色及光谱对比图 (a)对称结构截面图; (b) H = 200 nm, L = 60 nm, P = 250 nm时, 共轴腔厚度D从10—35 nm的结构色显示图; (c) 不同共轴腔厚度的反射谱图; (d) 共轴腔厚度D的对比反射光谱图; (e) 厚度D对应的颜色路径图
    Fig. 7.  Structural color and spectrum comparison diagram: (a) When H = 200 nm, L = 60 nm, P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10 ~ 35 nm; (b) structural color display diagram of coaxial cavity thickness D from 10 to 35 nm; (c) reflection spectrums of different coaxial cavity depths; (d) contrast reflection spectrogram of coaxial cavity thickness D; (e) color path corresponding to thickness D

    本文设计了一种非对称的共轴纳米腔有序阵列结构, 改变结构参数以分析非对称对于共轴腔在结构色的产生和调控的影响. 仿真及实验发现, 调整共轴腔深度、开口大小和厚度可以显示出明显的颜色变化. 结构产生的颜色包括了红、绿、蓝等整个可见光的大部分明亮色域, 展现了非对称结构应用于彩色显示的潜力, 这对于高分辨显示[14]、生物医学成像[15]、高密度信息存储[16]、图像加密[17]、超材料多波段滤波器[18]的设计及未来无线通信领域滤波[19]方面的设计有着指导性意义.

    [1]

    Kolle M, Pedro M S, Maik R J S 2010 Nat. Nanotechnol. 5 511Google Scholar

    [2]

    Noh H, Liew S F, Saranathan V 2010 Adv. Mater. 22 2871Google Scholar

    [3]

    Rassart M, Simonis P, Bay A 2009 Phys. Rev. E 80 031910Google Scholar

    [4]

    Parker A R, Welch V L, Driver D 2003 Nature 426 786Google Scholar

    [5]

    Roberts A S, Pors A, Albrektsen O, Bozhevolnyi S I 2014 Nano Lett. 14 783Google Scholar

    [6]

    VarPhilips R W, Bleikolm A F 1996 Appl. Opt. 35 5529Google Scholar

    [7]

    Liu X Y, Zhu S M, Zhang D 2010 Mater. Lett. 64 2745Google Scholar

    [8]

    Guo D Z, Hou S M, Xue Z Q 2002 Chin. Phys. Lett. 19 385Google Scholar

    [9]

    成建新, 周 盈, 常建华, 倪海彬 2021 光通信研究与应用 47 41

    Cheng J X, Zhou Y, Chang J H, Ni H B 2021 Study on Optical Communications 47 41

    [10]

    Murphy A, Sonnefraud Y, Krasavin A V, Ginzburg P, Morgan F, McPhillips J, Wurtz G, Maier S A, Zayats A V, Pollard R 2013 Appl. Phys. Lett. 102 103103Google Scholar

    [11]

    Dong Z, Ho J, Yu Y F, Fu Y H, Paniagua-Dominguez R, Wang S, Kuznetsov A I, Yang J K W 2017 Nano Lett. 17 7620Google Scholar

    [12]

    Vandehaar M A, Maas R, Brenny B, Polman A 2016 New J. Phys. 18 043016Google Scholar

    [13]

    Ni H B, Wang M, Shen T, Zhou J 2015 ACS Nano 9 1913Google Scholar

    [14]

    戴琦, 付娆, 邓联贵, 李嘉鑫, 郑国兴 2019 应用光学 40 1045Google Scholar

    Dai Q, Fu R, Deng L G, Li J X, Zheng G X 2019 Appl. Opt. 40 1045Google Scholar

    [15]

    杨悦, 王珏玉, 赵敏, 崔岱宗 2019 化学进展 31 1007

    Yang Y, Wang J Y, Zhao M, Cui D Z 2019 Prog Chem. 31 1007

    [16]

    Karmakar S, Behera D 2019 Ceram. Int. 45 237

    [17]

    Abdolahi M, Jiang H, Kaminska B 2019 Nat. Nanotechnol. 30 405301Google Scholar

    [18]

    钟敏, 史先春 2020 红外与毫米波学报 39 576Google Scholar

    Zhong M, Shi X C 2020 J. Infrared Millimeter 39 576Google Scholar

    [19]

    张浩驰, 何沛航, 牛凌云, 张乐鹏, 崔铁军 2021 光学学报 41 372

    Zhang H C, He P H, Niu L Y, Zhang L P, Cui T J 2021 Acta Opt. Sin. 41 372

    期刊类型引用(0)

    其他类型引用(1)

  • 图 1  模型结构示意图 (a) 三维图; (b) 剖面图

    Figure 1.  Model structure diagram: (a) Three dimensional diagram; (b) section diagram.

    图 2  结构与仿真结果 (a) 具有指定几何参数的同轴纳米腔的结构参数示意图; (b) 当单个非对称共轴腔的结构参数为H = 150 nm, R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm的反射、透射、吸收谱光谱图; (c) λ1 = 490 nm和(d) λ2 = 610 nm共振波长处竖直截面的电场分布图

    Figure 2.  Structure and simulation: (a) Single interface diagram of coaxial nano-cavity with specified geometric parameters; (b) reflection, transmission and absorption spectra of a single asymmetric coaxial cavity with H = 150 nm, R = 55 nm, r = 35 nm, d = 10 nm, P = 250 nm; cross section electric field distributions at (c) λ1 = 490 and (d) λ2 = 610 nm resonance wavelengths.

    图 3  实验图 (a)共轴腔结构SEM俯视图; (b)共轴腔结构截面SEM图; (c)结构色显微镜图; (d)—(f) 实验与仿真反射光谱对照图

    Figure 3.  SEM image of (a) coaxial cavity arrays and (b) cross section of coaxial cavities; (c) optical microscope image of coaxial cavi-ty arrays with different structure parameters; (d)–(f) comparison between experiments and simulation results.

    图 4  结构色及光谱图 (a) R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm时, 共轴腔深度H从40 nm增加到200 nm时结构色的变化; (b), (c)不同共轴腔深度H时的反射光谱; (d)与深度H变化对应的颜色变化路径图

    Figure 4.  Structural color and reflectance spectrum comparison diagram: (a) When R = 75 nm, r = 35 nm, d = 30 nm, P = 250 nm, the structural color changes when the coaxial cavity depth H increases from 40 nm to 200 nm; (b) , (c) reflection spectra at different coaxial cavity depths H; (d) trace of displayed colors as H varies

    图 5  结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔上外半径R在70—100 nm范围内的结构色显示图; (b) 不同共轴腔上外半径的反射谱图; (c) 共轴腔上外半径R的对比反射光谱图; (d) 上外半径R对应的颜色路径图

    Figure 5.  Structural color and spectrum contrast diagram: (a) Structural color display diagram of coaxial cavity with outer radius R from 70 to 100 nm; (b) reflection spectrums of different coaxial cavity depths; (c) contrast reflection spectra of outer radius R in coaxial cavity; (d) color path corresponding to upper outer radius R.

    图 6  结构色及光谱对比图 (a) H = 150 nm, r = 35 nm, P = 250 nm时, 共轴腔厚度d在10—45 nm范围内的结构色显示图; (b) 不同共轴腔厚度的反射谱图; (c) 共轴腔厚度d的对比反射光谱图; (d) 厚度d对应的颜色路径图

    Figure 6.  Structural color and spectrum comparison diagram: (a) When H = 150 nm, R= 55 nm, r = 35 nm, P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10–45 nm; (b) reflection spectrums of different coaxial cavity depths; (d) color path corresponding to thickness d.

    图 7  结构色及光谱对比图 (a)对称结构截面图; (b) H = 200 nm, L = 60 nm, P = 250 nm时, 共轴腔厚度D从10—35 nm的结构色显示图; (c) 不同共轴腔厚度的反射谱图; (d) 共轴腔厚度D的对比反射光谱图; (e) 厚度D对应的颜色路径图

    Figure 7.  Structural color and spectrum comparison diagram: (a) When H = 200 nm, L = 60 nm, P = 250 nm, the structure color display diagram of coaxial cavity thickness d from 10 ~ 35 nm; (b) structural color display diagram of coaxial cavity thickness D from 10 to 35 nm; (c) reflection spectrums of different coaxial cavity depths; (d) contrast reflection spectrogram of coaxial cavity thickness D; (e) color path corresponding to thickness D

  • [1]

    Kolle M, Pedro M S, Maik R J S 2010 Nat. Nanotechnol. 5 511Google Scholar

    [2]

    Noh H, Liew S F, Saranathan V 2010 Adv. Mater. 22 2871Google Scholar

    [3]

    Rassart M, Simonis P, Bay A 2009 Phys. Rev. E 80 031910Google Scholar

    [4]

    Parker A R, Welch V L, Driver D 2003 Nature 426 786Google Scholar

    [5]

    Roberts A S, Pors A, Albrektsen O, Bozhevolnyi S I 2014 Nano Lett. 14 783Google Scholar

    [6]

    VarPhilips R W, Bleikolm A F 1996 Appl. Opt. 35 5529Google Scholar

    [7]

    Liu X Y, Zhu S M, Zhang D 2010 Mater. Lett. 64 2745Google Scholar

    [8]

    Guo D Z, Hou S M, Xue Z Q 2002 Chin. Phys. Lett. 19 385Google Scholar

    [9]

    成建新, 周 盈, 常建华, 倪海彬 2021 光通信研究与应用 47 41

    Cheng J X, Zhou Y, Chang J H, Ni H B 2021 Study on Optical Communications 47 41

    [10]

    Murphy A, Sonnefraud Y, Krasavin A V, Ginzburg P, Morgan F, McPhillips J, Wurtz G, Maier S A, Zayats A V, Pollard R 2013 Appl. Phys. Lett. 102 103103Google Scholar

    [11]

    Dong Z, Ho J, Yu Y F, Fu Y H, Paniagua-Dominguez R, Wang S, Kuznetsov A I, Yang J K W 2017 Nano Lett. 17 7620Google Scholar

    [12]

    Vandehaar M A, Maas R, Brenny B, Polman A 2016 New J. Phys. 18 043016Google Scholar

    [13]

    Ni H B, Wang M, Shen T, Zhou J 2015 ACS Nano 9 1913Google Scholar

    [14]

    戴琦, 付娆, 邓联贵, 李嘉鑫, 郑国兴 2019 应用光学 40 1045Google Scholar

    Dai Q, Fu R, Deng L G, Li J X, Zheng G X 2019 Appl. Opt. 40 1045Google Scholar

    [15]

    杨悦, 王珏玉, 赵敏, 崔岱宗 2019 化学进展 31 1007

    Yang Y, Wang J Y, Zhao M, Cui D Z 2019 Prog Chem. 31 1007

    [16]

    Karmakar S, Behera D 2019 Ceram. Int. 45 237

    [17]

    Abdolahi M, Jiang H, Kaminska B 2019 Nat. Nanotechnol. 30 405301Google Scholar

    [18]

    钟敏, 史先春 2020 红外与毫米波学报 39 576Google Scholar

    Zhong M, Shi X C 2020 J. Infrared Millimeter 39 576Google Scholar

    [19]

    张浩驰, 何沛航, 牛凌云, 张乐鹏, 崔铁军 2021 光学学报 41 372

    Zhang H C, He P H, Niu L Y, Zhang L P, Cui T J 2021 Acta Opt. Sin. 41 372

  • [1] Luo Yu-Xuan, Cheng Yong-Zhi, Chen Fu, Luo Hui, Li Xiang-Cheng. Dual-band filter design based on hourglass-shaped spoof surface plasmon polaritons and interdigital capacitor structure. Acta Physica Sinica, 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [2] Wang Yue, Wang Lun, Sun Bai-Xun, Lang Peng, Xu Yang, Zhao Zhen-Long, Song Xiao-Wei, Ji Bo-Yu, Lin Jing-Quan. Near-field control of gold nanostructure under joint action of surface plasmon polariton and incident light. Acta Physica Sinica, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] Qi Yun-Kai, Yang Shu-Min, Li Xin, Xu Qin, Gu Jian-Jun. Effects of multi-energy field electrodeposition on properties of Al2O3-Co composite films. Acta Physica Sinica, 2022, 71(1): 017801. doi: 10.7498/aps.71.20211313
    [4] Effects of multi-energy fields electrodeposition on properties of alumina-cobalt composite films. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211313
    [5] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] Yin Yun-Qiao, Wu Hong-Wei. Magnetic mirror metasurfaces based on spoof surface plasmonic structures. Acta Physica Sinica, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [8] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [9] Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei. Omnidirectional cloaking based on spoof surface plasmonic structure. Acta Physica Sinica, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [10] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [11] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [12] Wang Chao, Li Yong-Feng, Shen Yang, Feng Mao-Chang, Wang Jia-Fu, Ma Hua, Zhang Jie-Qiu, Qu Shao-Bo. Design of dual-band-pass frequency selective structure based on spoof surface plasmon polariton. Acta Physica Sinica, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [13] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [14] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [15] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [17] Yang Shu-Min, Han Wei, Gu Jian-Jun, Li Hai-Tao, Qi Yun-Kai. Preparation and study of anodic alumina thin films with rainbow rings. Acta Physica Sinica, 2015, 64(7): 076102. doi: 10.7498/aps.64.076102
    [18] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [19] Yang Rui, Yu Wen-Hua, Bao Yang, Zhang Yuan-Xian, Pu Xiao-Yun. Whispering-gallery modes based on evanescent field in cylindrical micro-cavity. Acta Physica Sinica, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [20] Hou Chun-Feng, Guo Ru-Hai. Energy structures of the elliptic cylindrical quantum dots. Acta Physica Sinica, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
  • 期刊类型引用(0)

    其他类型引用(1)

Metrics
  • Abstract views:  4685
  • PDF Downloads:  55
  • Cited By: 1
Publishing process
  • Received Date:  20 July 2021
  • Accepted Date:  21 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回