Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of non-Hermitian electromagnetic metasurfaces

Fan Hui-Ying Luo Jie

Citation:

Research progress of non-Hermitian electromagnetic metasurfaces

Fan Hui-Ying, Luo Jie
PDF
HTML
Get Citation
  • Electromagnetic metasurface, as a type of planar electromagnetic material consisting of single-layer or multilayer subwavelength artificial micro-structure, can efficiently control the polarization, amplitude and phase of electromagnetic wave on a subwavelength scale. However, confining electromagnetic waves to a deep-subwavelength scale generally is at the cost of a large loss, such as radiation loss, Ohmic loss. Interestingly, non-Hermitian physics provides us a new way to transform the disadvantage of loss into a new degree of freedom in metasurface design, paving the way to expanding the functionalities of metasurfaces. In recent years, the extraordinary effects in the non-Hermitian electromagnetic metasurfaces have attracted a lot of attention. In this review, we discuss the perfect absorption, exceptional points and surfaces waves of non-Hermitian electromagnetic metasurfaces, and point out the challenges and potentials in this field.
      Corresponding author: Luo Jie, luojie@suda.edu.cn
    [1]

    Cui T J, Smith D R, Liu R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer)

    [2]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons, Inc. )

    [3]

    Cai W, Shalaev V 2009 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [4]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [5]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [6]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889Google Scholar

    [7]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1Google Scholar

    [8]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [9]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [10]

    Chen H, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [11]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 2017 1700624

    [12]

    Turpin J P, Bossard J A, Morgan K L, Werner D H, Werner P L 2014 Int. J. Antennas Propag. 2014 1

    [13]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [14]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [15]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [16]

    邓俊鸿, 李贵新 2017 物理学报 66 147803Google Scholar

    Deng J H, Li G X 2017 Acta Phys. Sin. 66 147803Google Scholar

    [17]

    Krasnok A, Tymchenko M, Alù A 2018 Mater. Today 21 8Google Scholar

    [18]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 2018 1800415

    [19]

    Neshev D, Aharonovich I 2018 Light Sci. Appl. 7 58Google Scholar

    [20]

    Chen M, Kim M, Wong A M H, Eleftheriades G V 2018 Nanophotonics 7 1207Google Scholar

    [21]

    Ataloglou V G, Chen M, Kim M, Eleftheriades G V 2021 IEEE J. Microwaves 1 374Google Scholar

    [22]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [23]

    Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 eaat3100Google Scholar

    [24]

    Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692Google Scholar

    [25]

    Zang X, Yao B, Chen L, Xie J, Guo X V, Balakin A P, Shkurinov A, Zhuang S 2021 Light:Advanced Manufacturing 2 1Google Scholar

    [26]

    Du K, Barkaoui H, Zhang X, Jin L, Song Q, Xiao S 2022 Nanophotonics 11 1761Google Scholar

    [27]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [28]

    Kamali S M, Arbabi E, Arbabi A, Faraon A 2018 Nanophotonics 7 1041Google Scholar

    [29]

    Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Yang P, Wang S, Duan H 2020 Nanophotonics 9 3755Google Scholar

    [30]

    范庆斌, 徐挺 2017 物理学报 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [31]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [32]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427Google Scholar

    [33]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [34]

    Sun S, Yang K, Wang C, Juan T, Chen W T, Liao C Y, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [35]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [36]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [37]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar

    [38]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [39]

    Luo J, Chu H, Peng R, Wang M, Li J, Lai Y 2021 Light Sci. Appl. 10 89Google Scholar

    [40]

    Fan H, Li J, Lai Y, Luo J 2021 Phys. Rev. Appl. 16 044064Google Scholar

    [41]

    Ma Z, Fan H, Zhou H, Huang M, Luo J 2021 Opt. Express 29 39186Google Scholar

    [42]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [43]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [44]

    Wang S, Wu P C, Su V, Lai Y, Chu C H, Chen J, Lu S, Chen J, Xu B, Kuan C, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [45]

    Wang S, Wu P C, Su V, Lai Y, Chen M, Kuo H Y, Chen B H, Chen Y H, Huang T, Wang J, Lin R, Kuan C, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [46]

    Li L, Liu Z, Ren X, Wang S, Su V, Chen M, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P 2020 Science 368 1487Google Scholar

    [47]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [48]

    Huang L, Chen X, Muhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808Google Scholar

    [49]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [50]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [51]

    Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567Google Scholar

    [52]

    Jiang S, Xiong X, Hu Y, Hu Y, Ma G, Peng R, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [53]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar

    [54]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [55]

    Chu H, Li Q, Liu B, Luo J, Sun S, Hang Z H, Zhou L, Lai Y 2018 Light Sci. Appl. 7 50Google Scholar

    [56]

    Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383Google Scholar

    [57]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [58]

    Baranov D G, Zuev D A, Lepeshov S I, Kotov O V, Krasnok A E, Evlyukhin A B, Chichkov B N 2017 Optica 4 814Google Scholar

    [59]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [60]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249

    [61]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 1

    [62]

    Feng L, ElGanainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [63]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11Google Scholar

    [64]

    Qi B, Chen H Z, Ge L, Berini P, Ma R M 2019 Adv. Opt. Mater. 7 1900694Google Scholar

    [65]

    Huang Y, Shen Y, Min C, Fan S, Veronis G 2017 Nanophotonics 6 977Google Scholar

    [66]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [67]

    Özdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [68]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, Chen Y F 2019 Adv. Mater. 2019 1903639

    [69]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [70]

    Wiersig J 2020 Photonics Res. 8 1457Google Scholar

    [71]

    Krasnok A, Nefedkin N, Alu A 2021 IEEE Antennas Propag. Mag. 63 110Google Scholar

    [72]

    Li Z, Cao G, Li C, Dong S, Deng Y, Liu X, Ho J S, Qiu C 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [73]

    齐慧欣, 王晓晓, 胡小永, 龚旗煌 2020 红外与激光工程 49 20201029Google Scholar

    Qi H X, Wang X X, Hu X Y, Q H 2020 Infrared Laser Eng. 49 20201029Google Scholar

    [74]

    Fan Y, Liang H, Li J, Tsai D P, Zhang S 2022 ACS Photonics DOI: 10.1021/acsphotonics.2 c00816

    [75]

    Miri M A, LiKamWa P, Christodoulides D N 2012 Opt. Lett. 37 764Google Scholar

    [76]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [77]

    Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K, Rotter S 2014 Nat. Commun. 5 4034Google Scholar

    [78]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [79]

    Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M, Feng L 2016 Science 353 464Google Scholar

    [80]

    Longhi S 2010 Phys. Rev. A 82 031801(R

    [81]

    Gu Z, Zhang N, Lyu Q, Li M, Xiao S, Song Q 2016 Laser Photonics Rev. 10 588Google Scholar

    [82]

    Wong Z J, Xu Y, Kim J, O'Brien K, Wang Y, Feng L, Zhang X 2016 Nat. Photonics 10 796Google Scholar

    [83]

    Bai P, Ding K, Wang G, Luo J, Zhang Z, Chan C T, Wu Y, Lai Y 2016 Phys. Rev. A 94 063841Google Scholar

    [84]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [85]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [86]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [87]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S, Joannopoulos J D, Soljačić M 2015 Nature 525 354Google Scholar

    [88]

    Luo L, Shao Y, Li J, Fan R, Peng R, Wang M, Luo J, Lai Y 2021 Opt. Express 29 14345Google Scholar

    [89]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [90]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2020 Phys. Rev. Appl. 15 014009

    [91]

    Assawaworrarit S, Fan S 2020 Nat. Electron. 3 273Google Scholar

    [92]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901Google Scholar

    [93]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187Google Scholar

    [94]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [95]

    Wang S, Hou B, Lu W, Chen Y, Zhang Z Q, Chan C T 2019 Nat. Commun. 10 832Google Scholar

    [96]

    Lai Y, Lu Y, Suh M, Yuan Z, Vahala K 2019 Nature 576 65Google Scholar

    [97]

    Dong Z, Li Z, Yang F, Qiu C, Ho J S 2019 Nat. Electron. 2 335Google Scholar

    [98]

    De Carlo M, De Leonardis F, Soref R A, Colatorti L, Passaro V M N 2022 Sensors-Basel 22 3977Google Scholar

    [99]

    Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S 2014 Laser Photonics Rev. 8 495Google Scholar

    [100]

    Ra'Di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar

    [101]

    Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064Google Scholar

    [102]

    Alaee R, Albooyeh M, Rockstuhl C 2017 J. Phys. D 50 503002Google Scholar

    [103]

    Feng L, Huo P, Liang Y, Xu T 2019 Adv. Mater. 2019 1903787

    [104]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [105]

    Lawrence M, Xu N, Zhang X, Cong L, Han J, Zhang W, Zhang S 2014 Phys. Rev. Lett. 113 093901Google Scholar

    [106]

    Krešić I, Makris K G, Leonhardt U, Rotter S 2022 Phys. Rev. Lett. 128 183901Google Scholar

    [107]

    Coppolaro M, Moccia M, Castaldi G, Engheta N, Galdi V 2020 Proc. Natl. Acad. Sci. U.S.A. 117 13921Google Scholar

    [108]

    Correas-Serrano D, Alù A, Gomez-Diaz J S 2017 Phys. Rev. B 96 075436Google Scholar

    [109]

    Moccia M, Castaldi G, Alù A, Galdi V 2020 ACS Photonics 7 2064Google Scholar

    [110]

    Coppolaro M, Moccia M, Castaldi G, Alu A, Galdi V 2021 IEEE Trans. Microwave Theory Tech. 69 2060Google Scholar

    [111]

    Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [112]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [113]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [114]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [115]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901Google Scholar

    [116]

    Ye Y Q, Jin Y, He S 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 498Google Scholar

    [117]

    Sun J, Liu L, Dong G, Zhou J 2011 Opt. Express 19 21155Google Scholar

    [118]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D 43 225102Google Scholar

    [119]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104Google Scholar

    [120]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 044019Google Scholar

    [121]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [122]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443Google Scholar

    [123]

    Ding F, Jin Y, Li B, Cheng H, Mo L, He S 2014 Laser Photonics Rev. 8 946Google Scholar

    [124]

    Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J 2016 Nat. Photonics 10 393Google Scholar

    [125]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [126]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [127]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994Google Scholar

    [128]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20Google Scholar

    [129]

    Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A 2013 Nat. Mater. 12 158Google Scholar

    [130]

    Luo J, Li S, Hou B, Lai Y 2014 Phys. Rev. B 90 165128Google Scholar

    [131]

    Wang T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [132]

    Luo J, Lai Y 2019 Opt. Express 27 15800Google Scholar

    [133]

    Tong W, Luo J, Sun Z, Lai Y 2020 Appl. Phys. Express 13 032001Google Scholar

    [134]

    Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light Sci. Appl. 10 138Google Scholar

    [135]

    Huang Y, Kaj K, Chen C, Yang Z, Ul Haque S R, Zhang Y, Zhao X, Averitt R D, Zhang X 2022 ACS Photonics 9 1150Google Scholar

    [136]

    Potton R J 2004 Rep. Prog. Phys. 67 717Google Scholar

    [137]

    Fan H, Chu H, Luo H, Lai Y, Gao L, Luo J 2022 Optica 9 1138

    [138]

    Chong Y D, Ge L, Cao H, Stone A D 2010 Phys. Rev. Lett. 105 053901Google Scholar

    [139]

    Zhang J, MacDonald K F, Zheludev N I 2012 Light Sci. Appl. 1 e18Google Scholar

    [140]

    Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C 2015 Phys. Rev. B 91 220301(R

    [141]

    Wang C, Shen X, Chu H, Luo J, Zhou X, Hou B, Peng R, Wang M, Lai Y 2022 Appl. Phys. Lett. 120 171703Google Scholar

    [142]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [143]

    Luo J, Liu B, Hang Z H, Lai Y 2018 Laser Photonics Rev. 2018 1800001

    [144]

    Wang D, Luo J, Sun Z, Lai Y 2021 Opt. Express 29 5247Google Scholar

    [145]

    Bai P, Luo J, Chu H, Lu W, Lai Y 2020 Opt. Lett. 45 6635Google Scholar

    [146]

    Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar

    [147]

    Doiron C F, Naik G V 2019 Adv. Mater. 31 1904154Google Scholar

    [148]

    Yang F, Hwang A, Doiron C, Naik G V 2021 Opt. Mater. Express 11 2326Google Scholar

    [149]

    Yang F, Prasad C S, Li W, Lach R, Everitt H O, Naik G V 2022 Nanophotonics 11 1159Google Scholar

    [150]

    Liang Y, Gaimard Q, Klimov V, Uskov A, Benisty H, Ramdane A, Lupu A 2021 Phys. Rev. B 103 045419Google Scholar

    [151]

    Yu J, Ma B, Ouyang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [152]

    Zhang X, Zhang Z, Wang Q, Zhu S, Liu H 2019 ACS Photonics 6 2671Google Scholar

    [153]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [154]

    Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [155]

    Kang M, Liu F, Li J 2013 Phys. Rev. A 87 053824Google Scholar

    [156]

    Park S H, Lee S, Baek S, Ha T, Lee S, Min B, Zhang S, Lawrence M, Kim T 2020 Nanophotonics 9 1031Google Scholar

    [157]

    Kang M, Chen J, Chong Y D 2016 Phys. Rev. A 94 033834Google Scholar

    [158]

    Wang D, Li C, Zhang C, Kang M, Zhang X, Jin B, Tian Z, Li Y, Zhang S, Han J, Zhang W 2017 Appl. Phys. Lett. 110 021104Google Scholar

    [159]

    Jin B, Tan W, Zhang C, Wu J, Chen J, Zhang S, Wu P 2018 Adv. Theory Simul. 1 1800070Google Scholar

    [160]

    Li J, Fu J, Liao Q, Ke S 2019 J. Opt. Soc. Am. B:Opt. Phys. 36 2492Google Scholar

    [161]

    Cao T, Cao Y, Fang L 2019 Nanoscale 11 15828Google Scholar

    [162]

    Li S, Zhang X, Xu Q, Liu M, Kang M, Han J, Zhang W 2020 Opt. Express 28 20083Google Scholar

    [163]

    Leung H M, Gao W, Zhang R, Zhao Q, Wang X, Chan C T, Li J, Tam W Y 2020 Opt. Express 28 503Google Scholar

    [164]

    Xu J, Ouyang S, Luo L, Shen Y, Zou L, Tan Z, Deng X 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1847Google Scholar

    [165]

    Baek S, Park S H, Oh D, Lee K, Lee S, Lim H, Ha T, Park H, Zhang S, Yang L, Min B, Kim T T 2022 arXiv: 2208.10675 [physics.optics]

    [166]

    Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H, Richter A 2001 Phys. Rev. Lett. 86 787Google Scholar

    [167]

    Gu X, Bai R, Zhang C, Jin X R, Zhang Y Q, Zhang S, Lee Y P 2017 Opt. Express 25 11778Google Scholar

    [168]

    Sakhdari M, Farhat M, Chen P 2017 New J. Phys. 19 65002Google Scholar

    [169]

    Chong Y D, Zhu W, Premaratne M 2014 Appl. Phys. Lett. 105 131103Google Scholar

    [170]

    Chu H, Xiong X, Gao Y, Luo J, Jing H, Li C, Peng R, Wang M, Lai Y 2021 Sci. Adv. 7 eabj0935Google Scholar

    [171]

    Ge L, Chong Y D, Stone A D 2012 Phys. Rev. A 85 023802Google Scholar

    [172]

    Fleury R, Sounas D L, Alù A 2014 Phys. Rev. Lett. 113 023903Google Scholar

    [173]

    Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018

    [174]

    Sounas D L, Fleury R, Alù A 2015 Phys. Rev. Appl. 4 014005Google Scholar

    [175]

    Ra'Di Y, Sounas D L, Alù A, Tretyakov S A 2016 Phys. Rev. B 93 235427Google Scholar

    [176]

    Luo J, Li J, Lai Y 2018 Phys. Rev. X 8 031035

    [177]

    Valagiannopoulos C A, Monticone F, Alù A 2016 J. Opt. 18 044028Google Scholar

    [178]

    Savoia S, Valagiannopoulos C A, Monticone F, Castaldi G, Galdi V 2017 Phys. Rev. B 95 115114Google Scholar

    [179]

    Kord A, Sounas D L, Alù A 2018 Phys. Rev. Appl. 10 054040Google Scholar

    [180]

    Sakhdari M, Estakhri N M, Bagci H, Chen P 2018 Phys. Rev. Appl. 10 024030Google Scholar

    [181]

    Nicolussi M, Riley J A, Pacheco-Peña V 2021 Appl. Phys. Lett. 119 263507Google Scholar

    [182]

    Liberal I, Engheta N 2017 Nat. Photonics 11 149Google Scholar

    [183]

    罗杰, 赖耘 2019 物理 48 426

    Luo J, Lai Y 2019 Physics 48 426

    [184]

    Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903Google Scholar

    [185]

    Luo J, Hang Z H, Chan C T, Lai Y 2015 Laser Photonics Rev. 9 523Google Scholar

    [186]

    Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [187]

    Thongrattanasiri S, Koppens F H L, García De Abajo F J 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [188]

    Farhat M, Yang M, Ye Z, Chen P 2020 ACS Photonics 7 2080Google Scholar

    [189]

    Ye D, Chang K, Ran L, Xin H 2014 Nat. Commun. 5 5841Google Scholar

    [190]

    Dong S, Hu G, Wang Q, Jia Y, Zhang Q, Cao G, Wang J, Chen S, Fan D, Jiang W, Li Y, Alù A, Qiu C 2020 ACS Photonics 7 3321Google Scholar

    [191]

    Cao G, Zhao C, Dong S, Liu K, Zeng Y, Zhang Q, Zhang Y, Li Y, Zhu H 2022 Opt. Laser Technol. 156 108497Google Scholar

    [192]

    Li M, Wang Z, Yin W, Li E, Chen H 2022 IEEE Trans. Antennas Propag. DOI: 10.1109/TAP.2022.3209282

    [193]

    Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M 2014 Phys. Rev. A 89 065801Google Scholar

    [194]

    Gao F, Yuan P, Sun Z, Deng J, Li Y, Jin G, Yan B 2022 Adv. Photonics Res. 3 2200019Google Scholar

    [195]

    Gao F, Sun Z, Yuan P, Deng J, Jin G, Zhou J, Liu H, Yan B 2022 Appl. Phys. Lett. 121 091701Google Scholar

    [196]

    Kang M, Zhang T, Zhao B, Sun L, Chen J 2021 Opt. Express 29 11582Google Scholar

    [197]

    Xiao S, Gear J, Rotter S, Li J 2016 New J. Phys. 18 085004Google Scholar

    [198]

    Park J, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, Lo Y, Kanté B 2020 Nat. Phys. 16 462Google Scholar

    [199]

    Chen P, Jung J 2016 Phys. Rev. Appl. 5 064018Google Scholar

    [200]

    Wu T, Zhang W, Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R, Duan P, Li J, Wang B, Shi L, Zi J, Zhang X 2020 Phys. Rev. Lett. 124 083901Google Scholar

    [201]

    Kang M, Zhu W, Rukhlenko I D 2017 Phys. Rev. A 96 063823Google Scholar

    [202]

    Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P 2021 Science 373 1133Google Scholar

    [203]

    Kolkowski R, Kovaios S, Koenderink A F 2021 Phys. Rev. Res. 3 023185Google Scholar

    [204]

    Zhao B, Sun L, Chen J 2020 Opt. Express 28 28896Google Scholar

    [205]

    Falcone F, Lopetegi T, Laso M, Baena J, Bonache J, Beruete M, Marqués R, Martín F, Sorolla M 2004 Phys. Rev. Lett. 93 197401Google Scholar

    [206]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [207]

    Luo J, Yang Y, Yao Z, Lu W, Hou B, Hang Z H, Chan C T, Lai Y 2016 Phys. Rev. Lett. 117 223901Google Scholar

    [208]

    Ji W, Luo J, Lai Y 2019 Opt. Express 27 19463Google Scholar

    [209]

    Bisharat D A J, Sievenpiper D F 2017 Phys. Rev. Lett. 119 106802Google Scholar

    [210]

    Kong X, Bisharat D J, Xiao G, Sievenpiper D F 2019 Phys. Rev. A 99 033842Google Scholar

    [211]

    Singh S, Davis R J, Bisharat D J, Lee J, Kandil S M, Wen E, Yang X, Zhou Y, Bandaru P R, Sievenpiper D F 2022 IEEE Antennas Propag. Mag. 64 51Google Scholar

    [212]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [213]

    Luo L, Luo J, Chu H, Lai Y 2021 Adv. Photonics Res. 2 2000081Google Scholar

    [214]

    Nye N S, Halawany A E, Markos C, Khajavikhan M, Christodoulides D N 2020 Phys. Rev. Appl. 13 064005Google Scholar

    [215]

    Deng Z L, Li F J, Li H, Li X, Alù A 2022 Laser Photonics Rev. 16 2100617Google Scholar

    [216]

    Zhu X, Xu Y, Zou Y, Sun X, He C, Lu M, Liu X, Chen Y 2016 Appl. Phys. Lett. 109 111101Google Scholar

    [217]

    Mortensen N A, Gonçalves P A D, Khajavikhan M, Christodoulides D N, Tserkezis C, Wolff C 2018 Optica 5 1342Google Scholar

  • 图 1  非厄米电磁超表面示意图

    Figure 1.  Illustration of non-Hermitian electromagnetic metasurfaces.

    图 2  谐振型完美吸波超表面 (a) 左: 超表面单元结构示意图; 右: 吸波性能的仿真结果[111]; (b) 光学吸波超表面单元示意图, 顶部为金属矩形阵列[112]; (c) 光学吸波超表面单元示意图, 顶部为金属圆盘阵列[113]; (d) 基于耦合模理论的等效单通道谐振腔模型[114]; (e) 复合超表面结构单元, 不同尺寸的谐振单元在横向上排布[115]; (f) 复合超表面结构单元, 不同尺寸的谐振单元在纵向上排布[116]; (g) 拥有三个谐振频点的分形结构单元[119]

    Figure 2.  Resonant absorbing metasurfaces. (a) Left: Illustration of the metasurface unit cell; Right: Simulated absorption spectrum[111]. (b) An optical absorbing metasurface unit cell with an array of metallic disks on the top[112]. (c) An optical absorbing metasurface unit cell with an array of rectangular metallic particles on the top[113]. (d) The equivalent single-port resonator model based on coupled mode theory[114]. (e) Composite metasurface unit cell consisting of horizontally arranged resonators of different sizes[115]. (f) Composite metasurface unit cell consisting of vertically arranged resonators of different sizes[116]. (g) Fractal unit cell exhibiting three resonant frequencies[119].

    图 3  非谐振型超宽频完美吸波超表面 (a) 左: 布儒斯特超表面示意图; 中: 原理示意图; 右: 吸波性能的仿真结果[40]; (b) 超宽频相干完美吸收的原理示意图[140]; (c) 超宽频相干完美吸收的测量装置示意图, 以及实验测得的反射率和吸收率与频率的关系[139]

    Figure 3.  Non-resonant ultra-broadband absorbing metasurfaces. (a) Left: Illustration of the Brewster metasurface; Middle: The underlying physics; Right: Simulated absorption spectrum[40]. (b) Illustration of ultra-broadband coherent perfect absorption[140]. (c) Illustration of the experimental setup, and measured reflectance and absorptance as the function of frequency[139].

    图 4  非厄米电磁超表面的耦合理论模型 (a) 左: 两个耦合谐振单元组成的二能级系统; 右: 本征值的演化; (b) 左: 两个具有正交激励方向的偶极子组成的二能级系统; 右:本征值的演化

    Figure 4.  Coupling model of non-Hermitian electromagnetic metasurfaces. (a) Left: A generic two-level system consisting of two coupled resonators; Right: The evolution of its eigenvalues. (b) Left: A generic two-level system consisting of two perpendicular dipoles; Right: The evolution of its eigenvalues.

    图 5  非厄米电磁超表面 (a) 左: 由开口方向垂直的开口环谐振器阵列构成的非厄米超表面; 右: 圆偏振入射波在超表面中的透射率[105]; (b) 左: 非厄米超表面单个单元的几何结构; 右: 本征态在参数空间中围绕奇异点的演化[156]

    Figure 5.  Non-Hermitian electromagnetic metasurfaces. (a) Left: A non-Hermitian metasurfaces consisting of an array of orthogonally oriented split ring resonators; Right: The transmission of circularly polarized waves on this metasurface[105]. (b) Left: Schematic of the metasurface unit cell; Right: The evolution of the eigenstates in parameter space as the EP is encircled[156].

    图 6  (a) 非厄米电磁超表面的散射理论模型; (b): 本征值的演化

    Figure 6.  (a) Scattering model of non-Hermitian electromagnetic metasurfaces; (b) the evolution of eigenvalues.

    图 7  PT对称电磁超表面中的奇异点及单向无反射特性 (a) 左: 由一对平衡损耗与增益的超表面构成的PT对称超表面系统示意图; 右: 奇异点诱导的单向无反射负折射现象[172]; (b) 奇异点诱导的单向无反射成像[173]; (c) 左: 当超表面之间为零折射率介质时, 系统中的两类相变奇异点趋于合并; 右: 合并奇异点诱导的对杂质免疫的完美传输效应[176]

    Figure 7.  EPs and unidirectional reflectionless properties of PT-symmetric electromagnetic metasurfaces. (a) Left: Illustration of a PT-symmetric metasurface system composed of a pair of metasurfaces with balanced loss and gain; Right: EP-induced unidirectional reflectionless negative refraction[172]. (b) EP-induced unidirectional reflectionless imaging[173]. (c) Left: Two classes of EPs tend to coalesce into one when the material between the two metasurface is an zero-index medium; Right: Coalesced EP-induced impurity-immune perfect wave transmission[176].

    图 8  非厄米超表面中奇异点在传感方面的应用 (a) 左: Diabolic点(DP)的频率分裂量与微扰强度$\varepsilon $的关系; 右: 奇异点的频率分裂量与微扰强度$\varepsilon $的关系[94]; (b) 左: 由上下两层在横向上错位的金条阵列组成的等离激元超表面; 右: 在奇异点下频率分裂量随微扰强度$\varepsilon $的变化[198]

    Figure 8.  Sensing applications of EPs in non-Hermitian metasurfaces. (a) Left: Frequency splitting of DP versus the perturbation strength$\varepsilon $; Right: Frequency splitting of EP versus the perturbation strength $\varepsilon $[94]. (b) Left: A plasmonic metasurface composed of two layers of gold bars with a lateral shift; Right: The frequency splitting of EP versus the perturbation strength $\varepsilon $ [198].

    图 9  非厄米超表面中奇异点在相位操控上的应用 (a) 左: 超表面结构单元示意图; 右: 实验样品照片图[163]; (b) 实验测得的交叉偏振衍射图样随垂直狭槽的间距的变化[163]

    Figure 9.  Phase control with EPs in non-Hermitian metasurfaces. (a) Left: illustration of the metasurface unit cell. Right: The photograph of the fricated sample[163]. (b) Experimental cross-polarization diffraction patterns for different separation distance between orthogonal slots[163].

    图 10  非厄米电磁超表面上的奇异表面波 (a) 左: 各向异性非厄米超表面上的自准直表面等离激元波; 右: 基于的石墨烯的设计的各向异性非厄米超表面[108]; (b) 左: PT对称超表面上的线波示意图; 右: 线波的仿真结果[109]

    Figure 10.  Extraordinary surface waves on non-Hermitian electromagnetic metasurfaces. (a) Left: Surface plasmon canalization on an anisotropic non-Hermitian metasurface; Right: The graphene-based anisotropic non-Hermitian metasurface[108]. (b) Left: Line waves on a PT-symmetric metasurface. Right: The simulation results[109].

  • [1]

    Cui T J, Smith D R, Liu R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer)

    [2]

    Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons, Inc. )

    [3]

    Cai W, Shalaev V 2009 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [4]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [5]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [6]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889Google Scholar

    [7]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1Google Scholar

    [8]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [9]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [10]

    Chen H, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [11]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 2017 1700624

    [12]

    Turpin J P, Bossard J A, Morgan K L, Werner D H, Werner P L 2014 Int. J. Antennas Propag. 2014 1

    [13]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [14]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [15]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [16]

    邓俊鸿, 李贵新 2017 物理学报 66 147803Google Scholar

    Deng J H, Li G X 2017 Acta Phys. Sin. 66 147803Google Scholar

    [17]

    Krasnok A, Tymchenko M, Alù A 2018 Mater. Today 21 8Google Scholar

    [18]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 2018 1800415

    [19]

    Neshev D, Aharonovich I 2018 Light Sci. Appl. 7 58Google Scholar

    [20]

    Chen M, Kim M, Wong A M H, Eleftheriades G V 2018 Nanophotonics 7 1207Google Scholar

    [21]

    Ataloglou V G, Chen M, Kim M, Eleftheriades G V 2021 IEEE J. Microwaves 1 374Google Scholar

    [22]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [23]

    Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 eaat3100Google Scholar

    [24]

    Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692Google Scholar

    [25]

    Zang X, Yao B, Chen L, Xie J, Guo X V, Balakin A P, Shkurinov A, Zhuang S 2021 Light:Advanced Manufacturing 2 1Google Scholar

    [26]

    Du K, Barkaoui H, Zhang X, Jin L, Song Q, Xiao S 2022 Nanophotonics 11 1761Google Scholar

    [27]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [28]

    Kamali S M, Arbabi E, Arbabi A, Faraon A 2018 Nanophotonics 7 1041Google Scholar

    [29]

    Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Yang P, Wang S, Duan H 2020 Nanophotonics 9 3755Google Scholar

    [30]

    范庆斌, 徐挺 2017 物理学报 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [31]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [32]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427Google Scholar

    [33]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [34]

    Sun S, Yang K, Wang C, Juan T, Chen W T, Liao C Y, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [35]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [36]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [37]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar

    [38]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [39]

    Luo J, Chu H, Peng R, Wang M, Li J, Lai Y 2021 Light Sci. Appl. 10 89Google Scholar

    [40]

    Fan H, Li J, Lai Y, Luo J 2021 Phys. Rev. Appl. 16 044064Google Scholar

    [41]

    Ma Z, Fan H, Zhou H, Huang M, Luo J 2021 Opt. Express 29 39186Google Scholar

    [42]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [43]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [44]

    Wang S, Wu P C, Su V, Lai Y, Chu C H, Chen J, Lu S, Chen J, Xu B, Kuan C, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [45]

    Wang S, Wu P C, Su V, Lai Y, Chen M, Kuo H Y, Chen B H, Chen Y H, Huang T, Wang J, Lin R, Kuan C, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [46]

    Li L, Liu Z, Ren X, Wang S, Su V, Chen M, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P 2020 Science 368 1487Google Scholar

    [47]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [48]

    Huang L, Chen X, Muhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808Google Scholar

    [49]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [50]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [51]

    Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567Google Scholar

    [52]

    Jiang S, Xiong X, Hu Y, Hu Y, Ma G, Peng R, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [53]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar

    [54]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [55]

    Chu H, Li Q, Liu B, Luo J, Sun S, Hang Z H, Zhou L, Lai Y 2018 Light Sci. Appl. 7 50Google Scholar

    [56]

    Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383Google Scholar

    [57]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [58]

    Baranov D G, Zuev D A, Lepeshov S I, Kotov O V, Krasnok A E, Evlyukhin A B, Chichkov B N 2017 Optica 4 814Google Scholar

    [59]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [60]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249

    [61]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 1

    [62]

    Feng L, ElGanainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [63]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11Google Scholar

    [64]

    Qi B, Chen H Z, Ge L, Berini P, Ma R M 2019 Adv. Opt. Mater. 7 1900694Google Scholar

    [65]

    Huang Y, Shen Y, Min C, Fan S, Veronis G 2017 Nanophotonics 6 977Google Scholar

    [66]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [67]

    Özdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [68]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, Chen Y F 2019 Adv. Mater. 2019 1903639

    [69]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [70]

    Wiersig J 2020 Photonics Res. 8 1457Google Scholar

    [71]

    Krasnok A, Nefedkin N, Alu A 2021 IEEE Antennas Propag. Mag. 63 110Google Scholar

    [72]

    Li Z, Cao G, Li C, Dong S, Deng Y, Liu X, Ho J S, Qiu C 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [73]

    齐慧欣, 王晓晓, 胡小永, 龚旗煌 2020 红外与激光工程 49 20201029Google Scholar

    Qi H X, Wang X X, Hu X Y, Q H 2020 Infrared Laser Eng. 49 20201029Google Scholar

    [74]

    Fan Y, Liang H, Li J, Tsai D P, Zhang S 2022 ACS Photonics DOI: 10.1021/acsphotonics.2 c00816

    [75]

    Miri M A, LiKamWa P, Christodoulides D N 2012 Opt. Lett. 37 764Google Scholar

    [76]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [77]

    Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K, Rotter S 2014 Nat. Commun. 5 4034Google Scholar

    [78]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [79]

    Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M, Feng L 2016 Science 353 464Google Scholar

    [80]

    Longhi S 2010 Phys. Rev. A 82 031801(R

    [81]

    Gu Z, Zhang N, Lyu Q, Li M, Xiao S, Song Q 2016 Laser Photonics Rev. 10 588Google Scholar

    [82]

    Wong Z J, Xu Y, Kim J, O'Brien K, Wang Y, Feng L, Zhang X 2016 Nat. Photonics 10 796Google Scholar

    [83]

    Bai P, Ding K, Wang G, Luo J, Zhang Z, Chan C T, Wu Y, Lai Y 2016 Phys. Rev. A 94 063841Google Scholar

    [84]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [85]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [86]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [87]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S, Joannopoulos J D, Soljačić M 2015 Nature 525 354Google Scholar

    [88]

    Luo L, Shao Y, Li J, Fan R, Peng R, Wang M, Luo J, Lai Y 2021 Opt. Express 29 14345Google Scholar

    [89]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [90]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2020 Phys. Rev. Appl. 15 014009

    [91]

    Assawaworrarit S, Fan S 2020 Nat. Electron. 3 273Google Scholar

    [92]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901Google Scholar

    [93]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187Google Scholar

    [94]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [95]

    Wang S, Hou B, Lu W, Chen Y, Zhang Z Q, Chan C T 2019 Nat. Commun. 10 832Google Scholar

    [96]

    Lai Y, Lu Y, Suh M, Yuan Z, Vahala K 2019 Nature 576 65Google Scholar

    [97]

    Dong Z, Li Z, Yang F, Qiu C, Ho J S 2019 Nat. Electron. 2 335Google Scholar

    [98]

    De Carlo M, De Leonardis F, Soref R A, Colatorti L, Passaro V M N 2022 Sensors-Basel 22 3977Google Scholar

    [99]

    Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S 2014 Laser Photonics Rev. 8 495Google Scholar

    [100]

    Ra'Di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar

    [101]

    Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064Google Scholar

    [102]

    Alaee R, Albooyeh M, Rockstuhl C 2017 J. Phys. D 50 503002Google Scholar

    [103]

    Feng L, Huo P, Liang Y, Xu T 2019 Adv. Mater. 2019 1903787

    [104]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [105]

    Lawrence M, Xu N, Zhang X, Cong L, Han J, Zhang W, Zhang S 2014 Phys. Rev. Lett. 113 093901Google Scholar

    [106]

    Krešić I, Makris K G, Leonhardt U, Rotter S 2022 Phys. Rev. Lett. 128 183901Google Scholar

    [107]

    Coppolaro M, Moccia M, Castaldi G, Engheta N, Galdi V 2020 Proc. Natl. Acad. Sci. U.S.A. 117 13921Google Scholar

    [108]

    Correas-Serrano D, Alù A, Gomez-Diaz J S 2017 Phys. Rev. B 96 075436Google Scholar

    [109]

    Moccia M, Castaldi G, Alù A, Galdi V 2020 ACS Photonics 7 2064Google Scholar

    [110]

    Coppolaro M, Moccia M, Castaldi G, Alu A, Galdi V 2021 IEEE Trans. Microwave Theory Tech. 69 2060Google Scholar

    [111]

    Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [112]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [113]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [114]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [115]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901Google Scholar

    [116]

    Ye Y Q, Jin Y, He S 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 498Google Scholar

    [117]

    Sun J, Liu L, Dong G, Zhou J 2011 Opt. Express 19 21155Google Scholar

    [118]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D 43 225102Google Scholar

    [119]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104Google Scholar

    [120]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 044019Google Scholar

    [121]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [122]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443Google Scholar

    [123]

    Ding F, Jin Y, Li B, Cheng H, Mo L, He S 2014 Laser Photonics Rev. 8 946Google Scholar

    [124]

    Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J 2016 Nat. Photonics 10 393Google Scholar

    [125]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [126]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [127]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994Google Scholar

    [128]

    Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20Google Scholar

    [129]

    Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A 2013 Nat. Mater. 12 158Google Scholar

    [130]

    Luo J, Li S, Hou B, Lai Y 2014 Phys. Rev. B 90 165128Google Scholar

    [131]

    Wang T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904Google Scholar

    [132]

    Luo J, Lai Y 2019 Opt. Express 27 15800Google Scholar

    [133]

    Tong W, Luo J, Sun Z, Lai Y 2020 Appl. Phys. Express 13 032001Google Scholar

    [134]

    Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light Sci. Appl. 10 138Google Scholar

    [135]

    Huang Y, Kaj K, Chen C, Yang Z, Ul Haque S R, Zhang Y, Zhao X, Averitt R D, Zhang X 2022 ACS Photonics 9 1150Google Scholar

    [136]

    Potton R J 2004 Rep. Prog. Phys. 67 717Google Scholar

    [137]

    Fan H, Chu H, Luo H, Lai Y, Gao L, Luo J 2022 Optica 9 1138

    [138]

    Chong Y D, Ge L, Cao H, Stone A D 2010 Phys. Rev. Lett. 105 053901Google Scholar

    [139]

    Zhang J, MacDonald K F, Zheludev N I 2012 Light Sci. Appl. 1 e18Google Scholar

    [140]

    Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C 2015 Phys. Rev. B 91 220301(R

    [141]

    Wang C, Shen X, Chu H, Luo J, Zhou X, Hou B, Peng R, Wang M, Lai Y 2022 Appl. Phys. Lett. 120 171703Google Scholar

    [142]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [143]

    Luo J, Liu B, Hang Z H, Lai Y 2018 Laser Photonics Rev. 2018 1800001

    [144]

    Wang D, Luo J, Sun Z, Lai Y 2021 Opt. Express 29 5247Google Scholar

    [145]

    Bai P, Luo J, Chu H, Lu W, Lai Y 2020 Opt. Lett. 45 6635Google Scholar

    [146]

    Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar

    [147]

    Doiron C F, Naik G V 2019 Adv. Mater. 31 1904154Google Scholar

    [148]

    Yang F, Hwang A, Doiron C, Naik G V 2021 Opt. Mater. Express 11 2326Google Scholar

    [149]

    Yang F, Prasad C S, Li W, Lach R, Everitt H O, Naik G V 2022 Nanophotonics 11 1159Google Scholar

    [150]

    Liang Y, Gaimard Q, Klimov V, Uskov A, Benisty H, Ramdane A, Lupu A 2021 Phys. Rev. B 103 045419Google Scholar

    [151]

    Yu J, Ma B, Ouyang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [152]

    Zhang X, Zhang Z, Wang Q, Zhu S, Liu H 2019 ACS Photonics 6 2671Google Scholar

    [153]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [154]

    Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [155]

    Kang M, Liu F, Li J 2013 Phys. Rev. A 87 053824Google Scholar

    [156]

    Park S H, Lee S, Baek S, Ha T, Lee S, Min B, Zhang S, Lawrence M, Kim T 2020 Nanophotonics 9 1031Google Scholar

    [157]

    Kang M, Chen J, Chong Y D 2016 Phys. Rev. A 94 033834Google Scholar

    [158]

    Wang D, Li C, Zhang C, Kang M, Zhang X, Jin B, Tian Z, Li Y, Zhang S, Han J, Zhang W 2017 Appl. Phys. Lett. 110 021104Google Scholar

    [159]

    Jin B, Tan W, Zhang C, Wu J, Chen J, Zhang S, Wu P 2018 Adv. Theory Simul. 1 1800070Google Scholar

    [160]

    Li J, Fu J, Liao Q, Ke S 2019 J. Opt. Soc. Am. B:Opt. Phys. 36 2492Google Scholar

    [161]

    Cao T, Cao Y, Fang L 2019 Nanoscale 11 15828Google Scholar

    [162]

    Li S, Zhang X, Xu Q, Liu M, Kang M, Han J, Zhang W 2020 Opt. Express 28 20083Google Scholar

    [163]

    Leung H M, Gao W, Zhang R, Zhao Q, Wang X, Chan C T, Li J, Tam W Y 2020 Opt. Express 28 503Google Scholar

    [164]

    Xu J, Ouyang S, Luo L, Shen Y, Zou L, Tan Z, Deng X 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1847Google Scholar

    [165]

    Baek S, Park S H, Oh D, Lee K, Lee S, Lim H, Ha T, Park H, Zhang S, Yang L, Min B, Kim T T 2022 arXiv: 2208.10675 [physics.optics]

    [166]

    Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H, Richter A 2001 Phys. Rev. Lett. 86 787Google Scholar

    [167]

    Gu X, Bai R, Zhang C, Jin X R, Zhang Y Q, Zhang S, Lee Y P 2017 Opt. Express 25 11778Google Scholar

    [168]

    Sakhdari M, Farhat M, Chen P 2017 New J. Phys. 19 65002Google Scholar

    [169]

    Chong Y D, Zhu W, Premaratne M 2014 Appl. Phys. Lett. 105 131103Google Scholar

    [170]

    Chu H, Xiong X, Gao Y, Luo J, Jing H, Li C, Peng R, Wang M, Lai Y 2021 Sci. Adv. 7 eabj0935Google Scholar

    [171]

    Ge L, Chong Y D, Stone A D 2012 Phys. Rev. A 85 023802Google Scholar

    [172]

    Fleury R, Sounas D L, Alù A 2014 Phys. Rev. Lett. 113 023903Google Scholar

    [173]

    Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018

    [174]

    Sounas D L, Fleury R, Alù A 2015 Phys. Rev. Appl. 4 014005Google Scholar

    [175]

    Ra'Di Y, Sounas D L, Alù A, Tretyakov S A 2016 Phys. Rev. B 93 235427Google Scholar

    [176]

    Luo J, Li J, Lai Y 2018 Phys. Rev. X 8 031035

    [177]

    Valagiannopoulos C A, Monticone F, Alù A 2016 J. Opt. 18 044028Google Scholar

    [178]

    Savoia S, Valagiannopoulos C A, Monticone F, Castaldi G, Galdi V 2017 Phys. Rev. B 95 115114Google Scholar

    [179]

    Kord A, Sounas D L, Alù A 2018 Phys. Rev. Appl. 10 054040Google Scholar

    [180]

    Sakhdari M, Estakhri N M, Bagci H, Chen P 2018 Phys. Rev. Appl. 10 024030Google Scholar

    [181]

    Nicolussi M, Riley J A, Pacheco-Peña V 2021 Appl. Phys. Lett. 119 263507Google Scholar

    [182]

    Liberal I, Engheta N 2017 Nat. Photonics 11 149Google Scholar

    [183]

    罗杰, 赖耘 2019 物理 48 426

    Luo J, Lai Y 2019 Physics 48 426

    [184]

    Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903Google Scholar

    [185]

    Luo J, Hang Z H, Chan C T, Lai Y 2015 Laser Photonics Rev. 9 523Google Scholar

    [186]

    Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [187]

    Thongrattanasiri S, Koppens F H L, García De Abajo F J 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [188]

    Farhat M, Yang M, Ye Z, Chen P 2020 ACS Photonics 7 2080Google Scholar

    [189]

    Ye D, Chang K, Ran L, Xin H 2014 Nat. Commun. 5 5841Google Scholar

    [190]

    Dong S, Hu G, Wang Q, Jia Y, Zhang Q, Cao G, Wang J, Chen S, Fan D, Jiang W, Li Y, Alù A, Qiu C 2020 ACS Photonics 7 3321Google Scholar

    [191]

    Cao G, Zhao C, Dong S, Liu K, Zeng Y, Zhang Q, Zhang Y, Li Y, Zhu H 2022 Opt. Laser Technol. 156 108497Google Scholar

    [192]

    Li M, Wang Z, Yin W, Li E, Chen H 2022 IEEE Trans. Antennas Propag. DOI: 10.1109/TAP.2022.3209282

    [193]

    Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M 2014 Phys. Rev. A 89 065801Google Scholar

    [194]

    Gao F, Yuan P, Sun Z, Deng J, Li Y, Jin G, Yan B 2022 Adv. Photonics Res. 3 2200019Google Scholar

    [195]

    Gao F, Sun Z, Yuan P, Deng J, Jin G, Zhou J, Liu H, Yan B 2022 Appl. Phys. Lett. 121 091701Google Scholar

    [196]

    Kang M, Zhang T, Zhao B, Sun L, Chen J 2021 Opt. Express 29 11582Google Scholar

    [197]

    Xiao S, Gear J, Rotter S, Li J 2016 New J. Phys. 18 085004Google Scholar

    [198]

    Park J, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, Lo Y, Kanté B 2020 Nat. Phys. 16 462Google Scholar

    [199]

    Chen P, Jung J 2016 Phys. Rev. Appl. 5 064018Google Scholar

    [200]

    Wu T, Zhang W, Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R, Duan P, Li J, Wang B, Shi L, Zi J, Zhang X 2020 Phys. Rev. Lett. 124 083901Google Scholar

    [201]

    Kang M, Zhu W, Rukhlenko I D 2017 Phys. Rev. A 96 063823Google Scholar

    [202]

    Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P 2021 Science 373 1133Google Scholar

    [203]

    Kolkowski R, Kovaios S, Koenderink A F 2021 Phys. Rev. Res. 3 023185Google Scholar

    [204]

    Zhao B, Sun L, Chen J 2020 Opt. Express 28 28896Google Scholar

    [205]

    Falcone F, Lopetegi T, Laso M, Baena J, Bonache J, Beruete M, Marqués R, Martín F, Sorolla M 2004 Phys. Rev. Lett. 93 197401Google Scholar

    [206]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [207]

    Luo J, Yang Y, Yao Z, Lu W, Hou B, Hang Z H, Chan C T, Lai Y 2016 Phys. Rev. Lett. 117 223901Google Scholar

    [208]

    Ji W, Luo J, Lai Y 2019 Opt. Express 27 19463Google Scholar

    [209]

    Bisharat D A J, Sievenpiper D F 2017 Phys. Rev. Lett. 119 106802Google Scholar

    [210]

    Kong X, Bisharat D J, Xiao G, Sievenpiper D F 2019 Phys. Rev. A 99 033842Google Scholar

    [211]

    Singh S, Davis R J, Bisharat D J, Lee J, Kandil S M, Wen E, Yang X, Zhou Y, Bandaru P R, Sievenpiper D F 2022 IEEE Antennas Propag. Mag. 64 51Google Scholar

    [212]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [213]

    Luo L, Luo J, Chu H, Lai Y 2021 Adv. Photonics Res. 2 2000081Google Scholar

    [214]

    Nye N S, Halawany A E, Markos C, Khajavikhan M, Christodoulides D N 2020 Phys. Rev. Appl. 13 064005Google Scholar

    [215]

    Deng Z L, Li F J, Li H, Li X, Alù A 2022 Laser Photonics Rev. 16 2100617Google Scholar

    [216]

    Zhu X, Xu Y, Zou Y, Sun X, He C, Lu M, Liu X, Chen Y 2016 Appl. Phys. Lett. 109 111101Google Scholar

    [217]

    Mortensen N A, Gonçalves P A D, Khajavikhan M, Christodoulides D N, Tserkezis C, Wolff C 2018 Optica 5 1342Google Scholar

  • [1] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Lai Zhen-Xin, Zhang Ye, Zhong Fan, Wang Qiang, Xiao Yan-Ling, Zhu Shi-Ning, Liu Hui. Wavelength-selective thermal emission metasurfaces based on synthetic dimensional topological Weyl points. Acta Physica Sinica, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] Wang Zheng-Yu, Huang Fei, Xue Run-Yu, Wang Zheng-Ling. Perfect absorption of symmetric grating structure based on the continuous metal film. Acta Physica Sinica, 2023, 72(5): 054201. doi: 10.7498/aps.72.20221701
    [6] Xu Can-Hong, Xu Zhi-Cong, Zhou Zi-Yu, Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of non-Hermitian lattice models. Acta Physica Sinica, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [7] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] SHI Ting-Ting,  ZHANG Lu-Dan,  ZHANG Shuai-Ning,  ZHANG Wei. High-order exceptional point in a quantum system of two qubits with interaction. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220716
    [9] Shi Ting-Ting, Zhang Lu-Dan, Zhang Shuai-Ning, Zhang Wei. High-order exceptional point in a quantum system of two qubits with interaction. Acta Physica Sinica, 2022, 71(13): 130303. doi: 10.7498/aps.70.20220716
    [10] Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong. Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Acta Physica Sinica, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [11] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [12] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [13] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [14] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [15] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [16] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [17] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [18] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [19] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [20] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
Metrics
  • Abstract views:  8302
  • PDF Downloads:  431
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2022
  • Accepted Date:  06 October 2022
  • Available Online:  29 October 2022
  • Published Online:  24 December 2022

/

返回文章
返回